

Assembly instructions

CONTENT:

ASSEMBLY PREPARATION GUIDE - READ FIRST 0	WALL LOG CONNECTION	9	
REQUIRED TOOLS 1	LOGS LOCKING PRINCIPLE	10	
PART DIMENSIONS 2	WALL INSULATION	11	
PART STICKERS 3	DOOR AND WINDOW INSTALLATION	12	
FOUNDATION 4	SINGLE AND DOUBLE DOORS	13	
BASE BEAMS (PROTECTING) 5	GARAGE DOOR	14	
FIRST LOGS OF YOUR CABIN 6	WINDOW	15	
HALF LOG CONNECTION ASSEMBLY GUIDE 7	REPLACING BROKEN DAMAGED GLASS	16	
WALL LOGS INSTALLATION 8	FINAL WALL PARTS	17	

CONTENT:

HE CONNECTION OF TOP LOGS	18	THE DORMER	26	
ROOF TRIANGLES	19	MULTIROOF	27	
ROOF BEAMS	20	ROOF DECORATION	28	
ROOF BEAM CONNECTION	21	FLOOR	29	
ROOF BOARDS	22	THE FIINAL FINISHING TOUCHES	30	
ROOF INSULATION	23	TERRACE	31	
EAVE FASCIA	24	U-PROFILES	32	
APEX FASCIA	25			

WELCOME TO YOUR NEW LOG CABIN PROJECT Congratulations on choosing our premium Nordic spruce log cabin! Your cabin is crafted from slow-growing, FSC-certified timber by master craftsmen with over 20 years of experience. This comprehensive guide will walk you through every step of the assembly process to ensure your cabin is built safely, correctly, and to last for generations.

CRITICAL: READ THIS ENTIRE PAGE BEFORE BEGINNING

This manual contains life-saving and warranty-protecting information. While it may be tempting to skip ahead or find shortcuts, following our step-by-step instructions is actually the **fastest and safest** path to successful completion.

PROFESSIONAL INSTALLATION STRONGLY ADVISED

If you lack experience in structural assembly or construction, hire a certified installer.

Our warranty (2 years, product-dependent) is voided by installation errors.

Professional installation guarantees:

- » Warranty validation
- » Compliance with safety codes
- » Structural integrity and load safety
- » Long-term product durability

Deviation from these instructions may cause:

- » Catastrophic structural failure
- » Life-threatening injuries (crush/fall/ electrocution hazards)
- » Voided warranty—leaving you liable for all repair/replacement costs
- » Costly property damage
- » Irreversible product defects

0

UNDERSTANDING YOUR PREMIUM NATURAL TIMBER

Your log cabin is crafted from natural spruce timber—a living material that continues to respond to environmental conditions even after harvesting. This natural characteristic gives wood its beauty and authenticity.

Natural Wood Features (NOT Defects):

- » Rough edges and plane marks on roof boards or wall beams
- » Resin pockets, cracks, and ingrown knots
- » Small fissures and natural wood grain variations
- » Minor color variations and wood texture differences
- » Natural movement with seasonal temperature and humidity changes
- » Settling as walls naturally adjust over time
- » Slight warping that will not affect structural integrity

These characteristics are **signatures of authentic Nordic timber** and do not compromise structural integrity or quality. They make your cabin a genuine wooden building rather than a manufactured imitation.

IMMEDIATE INSPECTION REQUIRED

Upon delivery, inspect your package immediately and thoroughly:

1. Verify Completeness

- » Check all components against the detailed parts list provided
- » Confirm all wooden structural components are present
- » Verify windows and doors are included
- » Note any extra replacement parts (normal for packaging stability)

2. Examine Condition

- » Look for any damage that may have occurred during shipping
- » Report any damage within 48 hours
- » Document with photos if damage is found

3. Protect Your Investment

- » If not assembling immediately, store in a completely dry, covered area
- » Keep away from direct sunlight and moisture
- » Ensure proper ventilation around stored materials

STORAGE WARNING:

Exposure to rain or direct sunlight can cause wood to warp, change color, expand, or develop rot, making assembly extremely difficult or impossible.

WHAT'S INCLUDED VS. WHAT YOU NEED

INCLUDED IN YOUR PACKAGE:

- » All wooden structural components
- » Windows and doors
- » Detailed parts list with descriptions and drawings
- » Extra replacement parts for common issues

NOT INCLUDED (YOU MUST PROVIDE):

- » All fasteners (screws, nails, bolts)
- » Tools for assembly
- » Foundation materials
- » Roofing materials (unless specified)
- » Wood preservatives and treatments

OPTIMAL ASSEMBLY CONDITIONS

IDEAL WEATHER FOR ASSEMBLY:

- » Cloudy summer day
- » Air humidity below 80%
- » Temperature between +5°C and +30°C (+23°F to +86°F)
- » Dry wood surface
- » No rain or direct sunlight during assembly
- » Dry conditions for at least 48 hours

DO NOT ASSEMBLE IN:

- » Rain or wet conditions
- » Direct sunlight (causes rapid expansion)
- » Extreme temperatures
- » High humidity conditions

ESSENTIAL PRE-ASSEMBLY CHECKLIST

Foundation & Permits:

- Foundation ready—level, square, meeting local building codes
- » Building permits obtained (check local requirements)
- » Site access cleared for delivery and assembly

Tools & Materials:

- » Complete tool list gathered
- » All required fasteners purchased
- » Wood preservatives and treatments ready
- » First aid kit accessible

Assembly Team:

- » Adequate helpers available (many steps require 2+ people)
- » Team familiar with safety procedures
- » Emergency contact information readily available

0

SPECIAL DESIGN FEATURES

Your cabin incorporates intelligent design elements for natural wood movement:

- » Doors and windows are not fixed directly to wall logs
- » Floating installation allows for natural settling
- » This prevents damage from wood expansion and contraction

WEATHER PROTECTION STRATEGY

BEFORE ASSEMBLY: Your timber arrives untreated (except impregnated floor beams) to allow for optimal treatment after assembly.

AFTER ASSEMBLY: To ensure your cabin's longevity and prevent premature aging:

- » Apply three coats of quality wood preservative
- » Use primer antiseptic, adhesive primer, and acrylic paint for maximum protection
- » Treat all wood end-cuts and nail heads with wood filler
- » Ensure proper ventilation and prevent water penetration

SUPPORT & ASSISTANCE

Complete contact information and technical support details are provided on our website.

For immediate assistance during assembly, visit our support portal for:

- » Live chat with technical experts
- » Video tutorials and troubleshooting guides
- » Downloadable supplementary materials
- » FAQ database

0

SAFETY AND SUCCESS REMINDERS

- » Take time to familiarize yourself with all components before beginning
- » Follow the assembly sequence exactly as outlined—no shortcuts
- » Don't rush—proper assembly ensures decades of enjoyment
- » Contact customer support if you encounter any issues or missing parts
- » Document your assembly process with photos for warranty claims

READY TO BEGIN?

Only proceed when you have:

- » Read and understood all safety warnings
- » Completed the inspection and preparation checklist
- » Ensured proper weather conditions for at least 48 hours
- » Gathered all required tools, materials, and helpers
- » Confirmed foundation is ready and permits obtained

Your log cabin represents a significant investment in quality, natural construction. Following these instructions carefully will ensure you achieve the best possible result and maximum longevity from your new structure.

Your success and safety are our top priorities. Turn to the next page to begin with Foundation Preparation and Site Layout.

REQUIRED TOOLS

REQUIRED TOOLS

Essential tools needed for assembly:

- » **Hammer** for general assembly work
- » Screwdriver for various fastening tasks
- » Ladder for reaching higher areas safely
- » Saw for any cutting requirements
- » Level critical for ensuring straight, even assembly
- » Measuring tape (Roulette) for accurate measurements

Additional useful tools that will speed up the process:

- » Knife for cutting and trimming
- » Drill significantly reduces working time
- » Pliers for gripping and manipulation
- » Rubber hammer for gentle adjustments without damage
- » Chisel for fine woodwork adjustments
- » Sandpaper for smoothing rough surfaces
- » Wood glue for additional bonding strength
- » Jack plane for wood surface preparation
- » Framing square and/or thread for checking angles and alignment
- » Woodworking clamp for holding pieces during assembly

PRO TIP: Power tools (saw, drill, etc.) will significantly reduce your working time and effort.

SAFETY EQUIPMENT

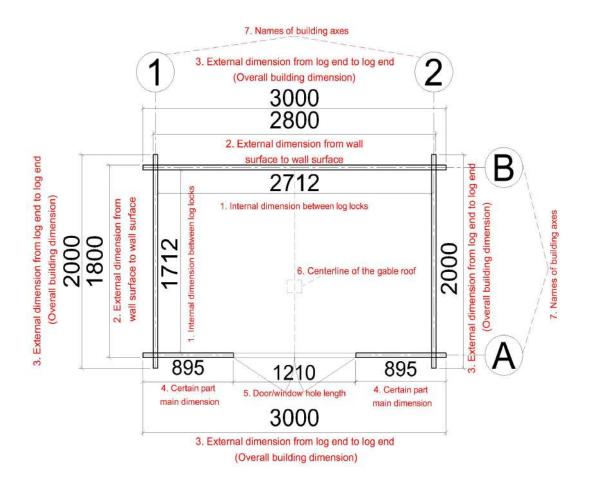
Always use appropriate safety gear:

- » Safety glasses/goggles
- » Work gloves
- » Dust mask (when sanding)
- » Steel-toed boots (recommended)

REQUIRED TOOLS

TOOLS

Before starting the assembling make sure that you have all the tools and items that will be necessary:


TOOLS THAT WILL BE NECESSARY FOR ASSEMBLY: ITEMS THAT WILL BE NECESSARY FOR ASSEMBLY:		TOOLS AND ITEMS THAT WOULD BE USEFUL FOR ASSEMBLY:					
Hammer	Ą			Knife	B	Drill	
Screwdriver	B	Nails		Pliers		Rubber hammer	8
Ladder				Chisel	ADDRE.	Sandpape	er 🌃
Saw		Screws			•		
Level			ENNING.	Wood glue	4	Jack plane	
Roulette				Framing square ar or thread	nd/ 	Wood- working clamp	

* Power tools (saw, drill and etc.) will significantly reduce your working time.

PART DIMENSIONS

In the picture below, you will find an example of a floor plan. Understanding the given dimensions will help you locate the received parts and place them correctly. The same principle applies to 70mm wall thickness or twin wall cabin.

Dimensions meaning – **1.** Internal dimension between log locks; **2.** External dimension from wall surface to wall surface; **3.** External dimension from log end to log end (overall building dimension); **4.** Certain part main dimension; **5.** Door/window hole length; **6.** Centerline of the gable roof; **7.** Names of building axes.

PART DIMENSIONS

2

Floor Plan Example

The document includes a detailed floor plan showing:

- » Overall building dimension: 3000mm
- » External wall surface dimension: 2800mm
- » Internal dimension between

log locks: 2712mm

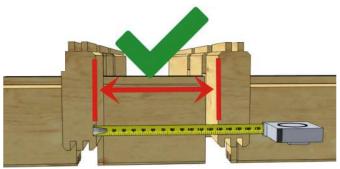
- » Building height: 2000mm x 1800mm
- » Door/window opening: 1210mm
- » Side dimensions: 895mm each
- » Building axes labeled as A and B

Important Measuring Instructions

To check/compare received part measurements with measurements from drawings – you must keep in mind that every log lock has additional grooves on both sides of lock, which helps to provide better joint quality. It means that measuring part internal dimensions or external dimensions (from wall face to wall face) in regular way, without deducting additional grooves size, can lead to dimension mismatches.

Correct Measuring Method

To measure exact internal or external (from wall face to wall face) dimension on given part you should fix any other parts (best choice for convenience is smallest ones) into both sides of part locks and then measure.


Visual Guide The document includes visual examples showing:

- » Incorrect method (marked with red X): Measuring directly across the log without accounting for grooves
- Correct method (marked with green checkmark):
 Measuring with connecting pieces fitted into the grooves on both sides

This proper measuring technique ensures accurate dimensions that match the architectural drawings and prevents assembly issues during construction.

For example:

PART STICKERS

3

UNDERSTANDING PART STICKERS

Every component in your assembly kit includes a numbered sticker containing essential information for proper identification and usage. These stickers eliminate guesswork and ensure you select the correct parts during assembly.

Sticker Information Layout

Each part sticker contains three clearly marked sections:

Section A (Top Position) - Part Number

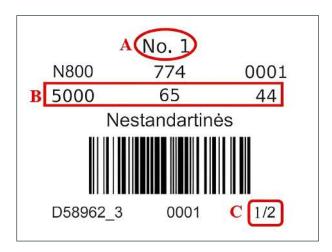
- » Displays the part number corresponding to your assembly drawings
- Match this number with the partslist provided in your instruction manual
- » Example: If you need part #1, look for the sticker showing "1" in this position

Section B (Middle Position) - Dimensions

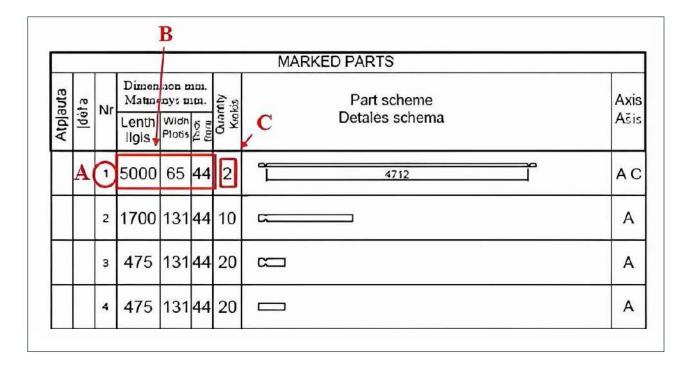
- » Shows part measurements in standard order: Length × Width × Thickness
- » All measurements are typically in millimeters (check your manual for units)
- » Use these dimensions to verify you have the correct part before installation

Section C (Bottom Position) - Quantity Required

- » Indicates how many of these specific parts you need for the complete assembly
- » Check this number against your inventory to ensure all parts are present
- » Set aside the exact quantity shown before beginning assembly steps

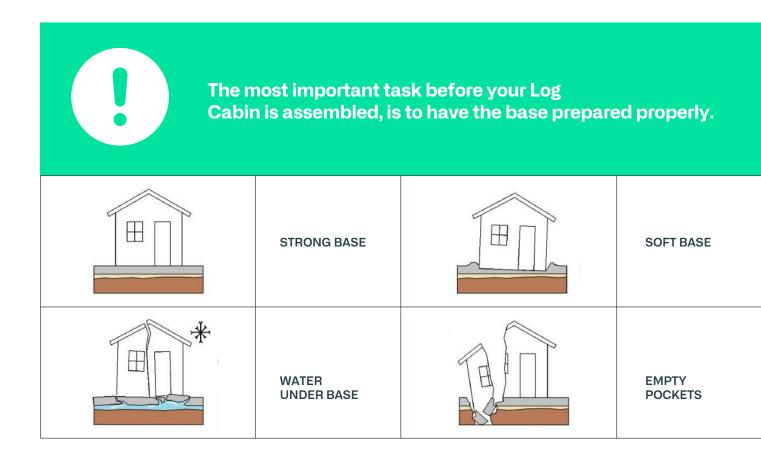

Using the Sticker System

- 1. Locate the part number you need from your assembly drawings
- 2. Find the matching sticker with that number in Section A
- 3. **Verify dimensions** in Section B match your expectations
- 4. Count out the quantity shown in Section C
- 5. Proceed with assembly following your step-by-step instructions


This systematic approach prevents assembly errors and ensures you have all necessary components before starting each step.

PART STICKERS

1. Part sticker example



2. Part list example

FOUNDATION

4

FOUNDATION PROBLEMS TO AVOID

FOUNDATION BENEFITS

- » **Strong Base** √ Level, stable foundation
- » **Soft Base** X Uneven, unstable ground causing cabin tilt
- » Water under Base X Poor drainage causes structural problems
- » Empty Pockets X Gaps create instability and settling

A properly prepared foundation ensures:

- » Easy log wall assembly Components fit together smoothly
- » Proper door and window operation -No binding or gaps
- » Long-term structural integrity -Prevents settling and warping
- » Moisture protection Keeps cabin dry and prevents rot

FOUNDATION

4

Before You Begin

Remember: Foundation materials are not included with your log cabin kit. You must source and prepare the foundation separately before assembly begins.

PRO TIP: Take extra time with foundation preparation. An even, stable foundation is the key to successful cabin assembly and years of trouble-free use.

Critical Foundation Standards

Foundation must be:

- » Level and flat: Essential for complete stability
- » Well-draining: Ground must permeate water well
- » Frost-protected: Prevent frost heaving damage
- » Load-bearing: Capable of supporting the full weight of the structure
- » Moisture-proof: No wooden components should contact moisture or soil

Recommended Foundation Options

1. Concrete Slab Foundation (Recommended)

- » Most stable and lasting option
- » Build at least 25cm above ground level
- » Provides excellent moisture protection
- » Best long-term investment

2. Concrete Sole Foundation

- » Alternative to full slab
- » Must be 25cm above ground level
- » Good stability with lower cost

3. Wooden Foundation

- » Natural appearance option
- » Requires proper moisture separation
- » Foundation materialsNOT included in package

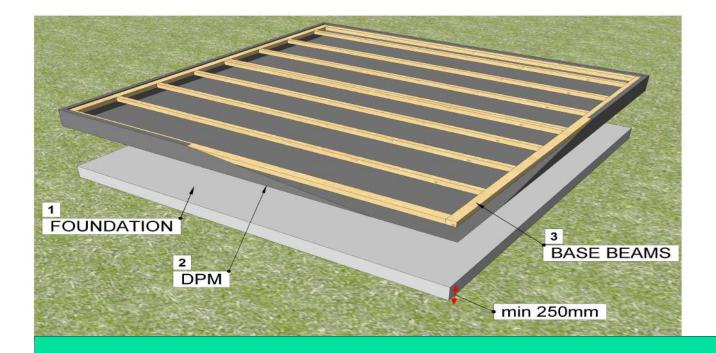
Critical Moisture Protection

Wooden parts are not close friends with humidity, even if impregnated:

- » Always separate wooden base beams from concrete with waterproof layer
- » Use any waterproof material of your choice
- » This prevents moisture damage and extends cabin life

BASE BEAMS (PROTECTING AND ASSEMBLY)

Essential Protection Requirements:

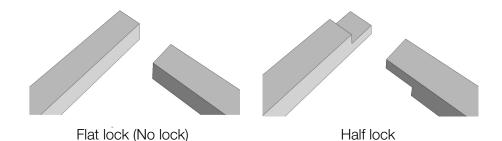

- » Use a waterproof layer (like damp-proof membrane/DPM) between the foundation and base beams
- » Foundation must be at least 25cm above ground level to protect from humidity
- » Foundation size should not exceed the base beam frame dimensions to prevent water pooling

DPM Installation:

- » If foundation covers the entire cabin area, DPM should cover the whole foundation
- » If foundation only covers the base beam frame, DPM only needs to cover contact points
- » Cut DPM about 200mm larger than base beam dimensions so it can be folded over the top
- » Secure the folded portion with a staple gun for maximum water protection

Critical Notes:

- » Waterproof materials are NOT included in the cabin package and must be purchased separately
- » Proper foundation sizing prevents rainwater from leaking under the cabin
- » Without protection, both floor and base beams can rot from moisture exposure


Base beams protection – 1. Foundation (not included); 2. DPM – damp-proof membrane (not included); 3. Base beams (included with log cabin).

BASE BEAMS (PROTECTING AND ASSEMBLY)

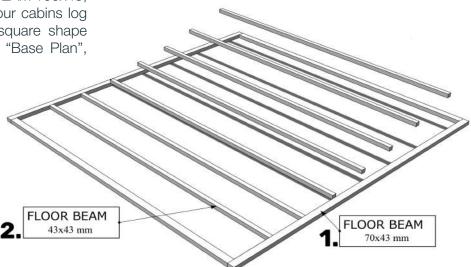
5

Depending on your type of cabin - base beams can have two types of locks:

It is recommended to fix the foundation to the base so it will stay stable and in one place.

Tip:

Wooden parts are not very close friends with humidity, even if those parts are impregnated, so it is recommended to separate them from concrete base with any kind of waterproof layer of your choice.



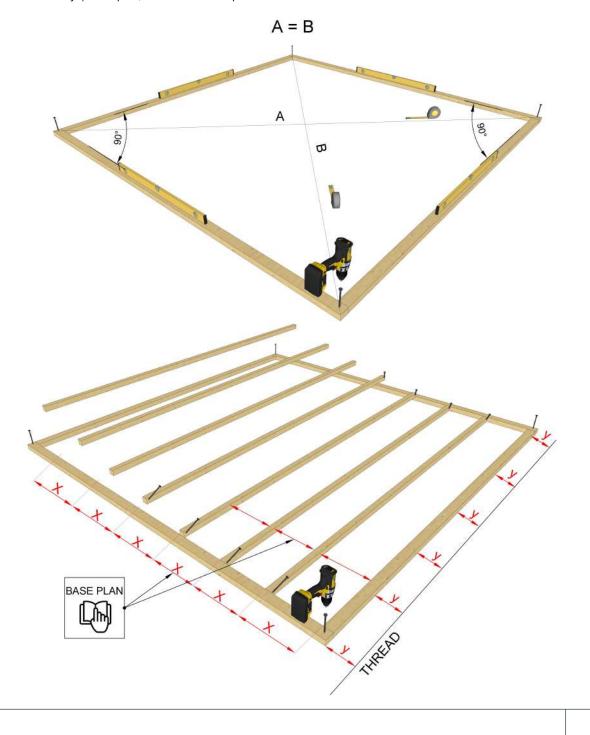
Make sure that all the corners of the construction you have screwed together have an exact 90° angle.

1. Start with the side beams (BASE BEAM 100x43; 80x43; 70x43 - size depends on your cabins log wall width), put all of them in to square shape exactly as it is shown in the given "Base Plan", DON'T SCREW IT YET.

2. Then place all 43x43 beams in a certain distance from one another as it is shown in the "Base Plan".

3. Screw them all together

Base beams installation – 1. External beams (start by placing them); 2. Internal beams.



BASE BEAMS (PROTECTING AND ASSEMBLY)

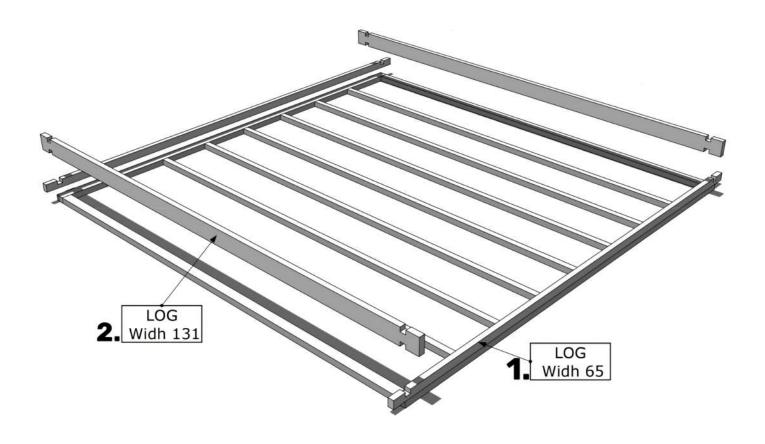
5

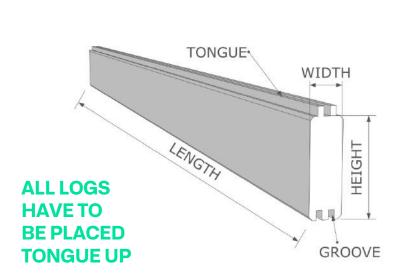
Tip:

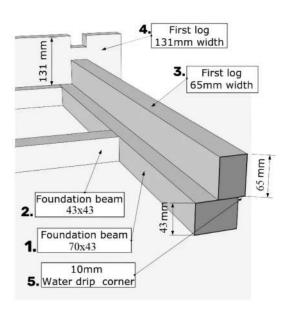
If you don't have framing square or similar tool, you can always check if all corners have exact 90° angle by fixing thread and making diagonals as shown in picture below (don't forget thread should be fixed in same place on every corner). Then you should measure diagonals lengths: if A=B, it means your start is good and you should continue building your cabin, however if A doesn't match B, you should fix assembly immediately as continuing building this way - can lead you to serious mismatches. Also please make sure that parts are not affected by weather conditions, if so – please use thread which should be tensed in straight line next to place where your first parts will be placed (shown in picture below) and make sure that every dimension (marked as "y") is equal, if not - fix the parts.

FIRST LOGS OF YOUR CABIN

Tools that will be useful or necessary:






First logs placement – 1. 65.5mm wall logs (must be placed first); 2. 131mm wall logs (placed after the 65.5mm logs are installed).

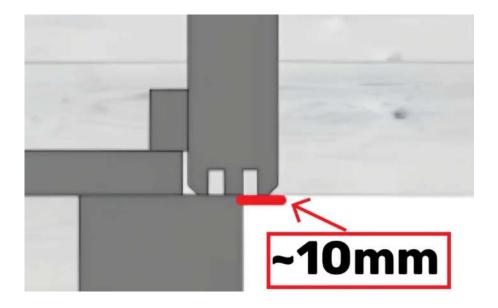
FIRST LOGS OF YOUR CABIN

6

First logs placement 2 – 1. External base beams; 2. Internal base beams; 3. 65.5mm logs; 4. 131mm logs; 5. Water drip corner (~10mm)

First Log Installation Overview

Log Types:


- » **65.5mm width logs** Must be placed first
- » 131mm width logs Placed after the 65.5mm logs are installed

Critical Requirements:

- » All logs must be placed tongue up
- » A waterproof layer is required between the foundation and first logs
- » Proper placement is crucial as "a good start is the key to success"

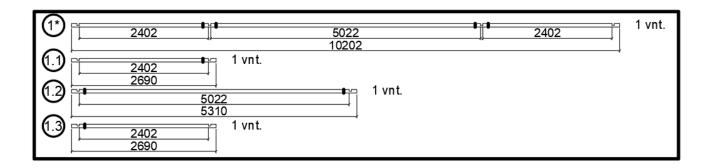
FIRST LOGS OF YOUR CABIN

Water drip corner

Installation Steps:

- 1. Placement Order: Install all first logs in the correct sequence, starting with 65.5mm logs
- 2. Positioning: Center the logs on the foundation with about 10mm overhang for water drip edge
- 3. Alignment Check: Verify logs are straight using the same thread technique used for base beams
- **4. Securing:** Screw logs in place with approximately 0.5m gaps between screws

Foundation Details:


- » External base beams (70x43mm)
- » Internal base beams (43x43mm)
- » 10mm water drip corner overhang to prevent water damage

HALF LOG CONNECTION ASSEMBLY GUIDE

Most log lock connections come pre-cut and ready to assemble. In most cases, you'll simply need to put the pieces together and secure them with screws.

Standard Assembly Process

Step 1: Identify Connection Points

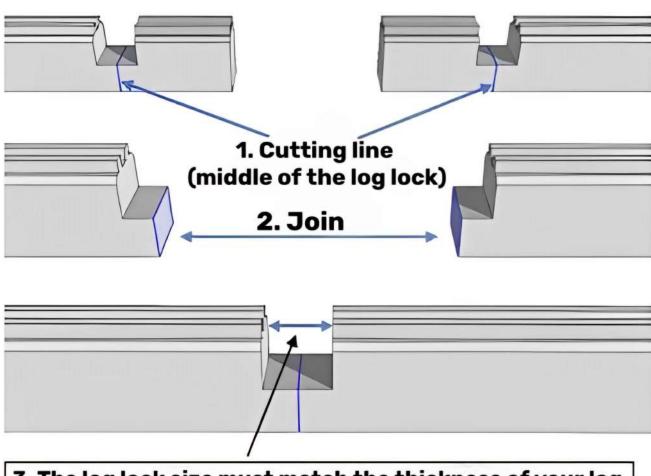
Look for the pre-cut connection points on your log pieces. These connection areas are typically marked or easily identifiable on the logs.

Step 2: Align and Join

- » Position the log pieces so the connections align properly
- » Fit the pieces together at the connection points
- » Ensure a snug, secure fit

Step 3: Secure with Screws

- » Insert screws through the designated holes
- » Tighten screws to secure the connection
- » Check that the joint is stable and properly aligned



HALF LOG CONNECTION ASSEMBLY GUIDE

7

Special Case: Uncut 65.5mm Logs

In rare instances, 65.5mm height logs may arrive with uncut log joints that require manual preparation.

3. The log lock size must match the thickness of your log cabin wall (44-70 mm)

65.5 mm height wall log connection – 1. Cutting line (must be in the middle of the log lock); 2. Join both cut parts; 3. The final log lock size must match the thickness of your cabin wall (44-70 mm) – please always check and cut these marked parts if required

HALF LOG CONNECTION ASSEMBLY GUIDE

7

Cutting Instructions

Step 1: Mark the Cutting Line

- » Locate the center of the log lock
- » Mark a cutting line exactly in the middle of the log lock

Step 2: Make the Cut

- » Cut along the marked line using appropriate tools
- » Ensure the cut is straight and clean

Step 3: Join the Cut Parts

- » Align the two cut sections
- » Test fit the pieces together

Critical Measurement Check

Final Size Verification:

- » The completed log lock must match your cabin wall thickness
- » Acceptable range: 44-70mm
- » Always measure and verify before final assembly
- » Trim if necessary to achieve proper fit

Quality Control

- » Double-check all connections before proceeding
- » Ensure all joints are secure and properly aligned
- » Verify that log lock dimensions match your cabin specifications

Tools You May Need

- » Measuring tape or ruler
- » Saw (if cutting is required)
- » Screwdriver or drill
- » Screws (as specified in your kit)

Safety Notes

- » Always wear appropriate safety equipment when cutting
- » Take accurate measurements to avoid mistakes
- » Test fit pieces before final assembly

8

Pre-Assembly Preparation

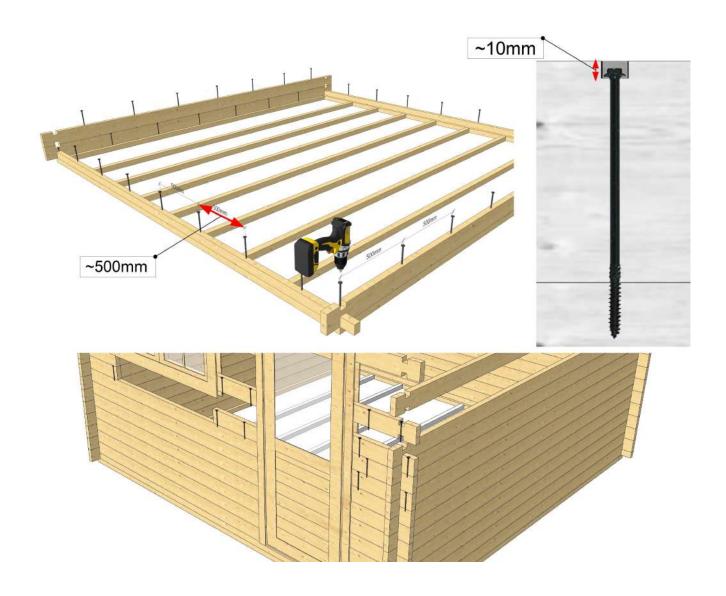
Tools and Materials Needed

- » Drill with bits for predrilling
- » Screws (appropriate for log cabin construction)
- » Level tool
- » Measuring tape
- » Hammer

- » Wooden block (for cushioned hammering)
- » Woodworking clamps
- » Silicone sealant (recommended)
- » Axis plans (construction drawings)

Step-by-Step Assembly Process

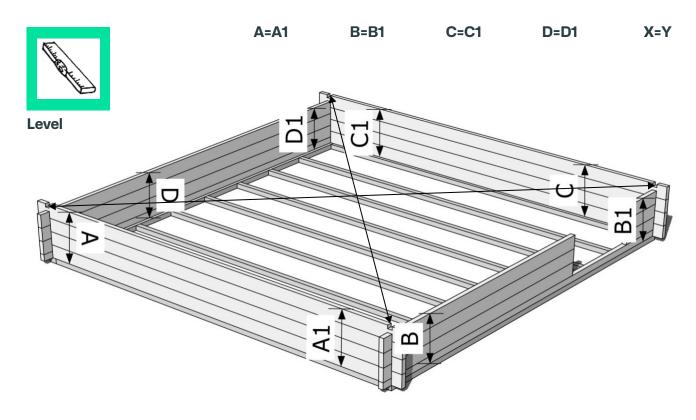
Step 1: Install First Logs


- 1. **Screw the first logs** securely to the foundation according to your axis plans
- 2. **Predrill holes** approximately 10mm deep for all screw heads to prevent wood splitting
- 3. Ensure the first logs are perfectly level and square

Step 2: Continue with Wall Logs

- Assembly Method: After the first logs, subsequent logs can be assembled using the interlocking cut connections
- 2. Recommended Approach: Despite the locking system, screw every log for best results
- 3. Screw Spacing: Place screws approximately 500mm (20 inches) apart along each log
- 4. Short Sections: For any short log pieces, screw both ends

8

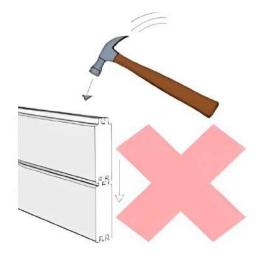


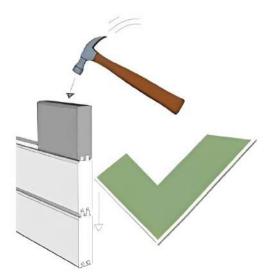
Step 3: Quality Control Every 3-4 Logs

- 1. Check Level: Use a level tool to verify horizontal alignment
- 2. **Measure Diagonals:** Ensure X = Y (diagonal measurements are equal)
- 3. **Verify Corners:** Check that A=A1, B=B1, C=C1, D=D1 (all corners are square)
- 4. Height Differences: Measure and compare heights at all corners

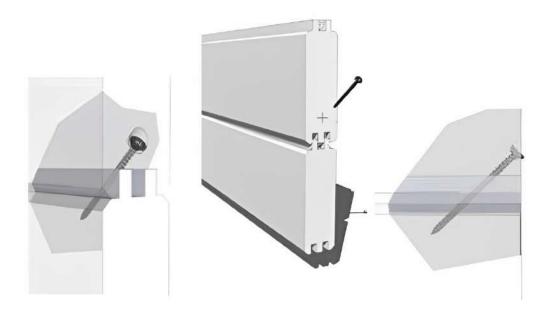
8

Step 4: Correcting Misalignments

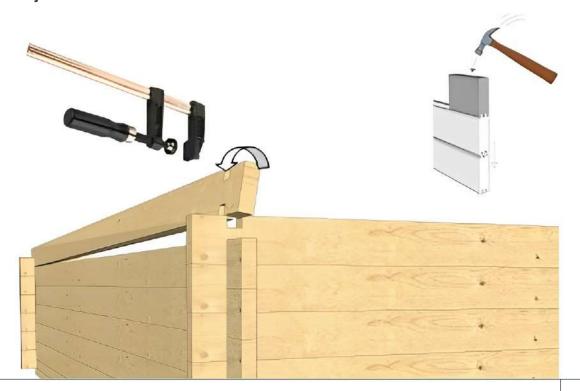

If you find mismatches (even a few millimeters):


Method 1: Hammer and Wood Block

- 1. Place a wooden block against the log
- 2. Use hammer to knock logs into proper position
- 3. **Never hit directly** on the log milling to avoid damage


Method 2: Additional Screwing (if hammering fails)

- 1. If logs bounce back and won't stay in place
- 2. Screw the problematic log to the one below it
- 3. This provides additional holding power



Step 5: Dealing with Twisted Logs

If logs are distorted or twisted:

- 1. Partial Installation: Insert one side of the log into its lock
- 2. Use Clamps: Apply woodworking clamp to rotate the log
- 3. Force into Position: Gradually work the other end into its lock
- 4. Final Adjustment: Use hammer and wood block if needed

8

Step 6: Weatherproofing (Recommended)

- 1. **Silicone Application:** Apply thin layer of silicone to every log connection
- 2. **Water Drip Areas:** Pay special attention to corners and grooves
- 3. **Coverage:** Focus on first log grooves where water might collect

Critical Success Factors

Consistency is Key

- » Screw Every Log: This ensures the wall expands and contracts as one unit
- » Avoid Partial Screwing: Mixed screwed/unscrewed logs can cause splitting and gaps over time

Precision Monitoring

- » Check Frequently: Every 3-4 logs, not just at the end
- » Fix Immediately: Small errors compound quickly
- » Roof Consequences: Misalignment will cause serious problems during roof installation

Weather Considerations

- » Rain Protection: If assembly gets wet, ventilate thoroughly before continuing
- » **Seasonal Movement:** Predrilled holes accommodate wood expansion/contraction

Common Mistakes to Avoid

- 1. **Skipping Level Checks:** Small errors become big problems
- 2. Hitting Log Milling Directly: Always use a wooden buffer
- 3. **Inconsistent Screwing:** Either screw all logs or none (but all is recommended)
- 4. **Ignoring Diagonal Measurements:** Square corners are essential for roof fit
- 5. Rushing Through Twisted Logs: Take time to properly align warped pieces

8

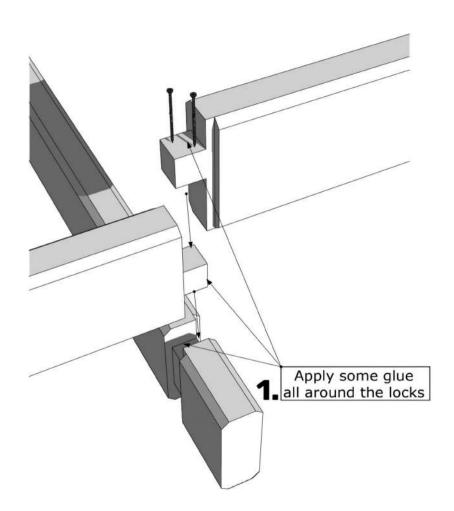
Final Quality Check

Before proceeding to roof installation:

- » All corners are square and level
- » No gaps between logs
- » All screws are properly countersunk
- » Silicone sealing is complete (if applied)
- » Structure is rigid and stable

Timeline Expectation

- » Plan for frequent measurement breaks
- » Allow extra time for problem-solving twisted logs
- » Don't rush the leveling process accuracy here saves hours later


9

Connecting your wall logs properly is one of the most critical steps in building a sturdy, long-lasting cabin. This process creates the structural integrity that will keep your cabin walls secure for years to come. Take your time with each connection - rushing this step could lead to gaps, instability, or structural issues later.

What You'll Need

- » Wood glue (exterior-grade recommended)
- » Two screws per connection
- » Drill with bits

- » Small drill bit for pilot holes
- » Screwdriver or drill bits
- » Clean cloth for excess glue remova

Wall log connection – 1. Apply some glue all around the log locks

9

Step-by-Step Process

Step 1: Prepare and Apply Wood Glue

Why this matters: The glue creates a weatherproof seal and adds extra holding power to your connection.

- » Clean both log surfaces of any dirt, sawdust, or debris
- » Apply a generous but even layer of wood glue completely around the lock areas where the logs will connect
- » Don't be stingy with the glue you want full coverage around the entire locking mechanism
- » Work relatively quickly as wood glue begins to set within 10-15 minutes

Step 2: Connect the Locks

Why this matters: Poor alignment here will create gaps that allow air, moisture, and pests to enter your cabin.

- » Carefully bring the two logs together
- » Apply firm, even pressure to ensure the locks seat completely
- » Check that there are no gaps between the locking surfaces
- » Wipe away any excess glue that squeezes out immediately with a damp cloth
- » The connection should feel solid and tight

Step 3: Secure with Screws

Critical safety note: This step prevents the wood from splitting and ensures a permanent connection.

Before Screwing:

- » ALWAYS predrill pilot holes This is not optional! Skipping this step often results in cracked logs
- » Use a drill bit slightly smaller than your screw diameter
- » Drill slowly to avoid splintering

Screw Placement (Very Important):

- » Use exactly two screws per connection as shown in the diagram
- » Never place screws in line with the wood grain this is the #1 cause of splitting
- » Position screws at an angle across the grain direction
- » Follow the exact placement shown in your diagram
- » Drive screws firmly but don't overtighten this can strip the wood or cause cracking

9

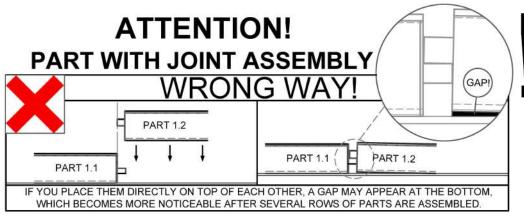
Quality Check

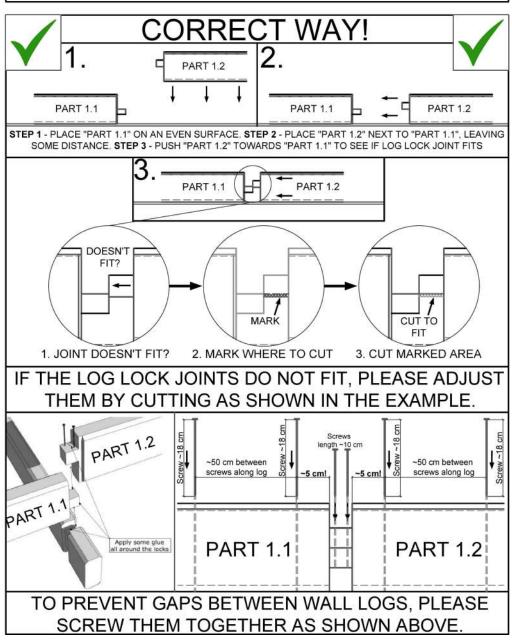
After completing each connection:

- » Check that the joint is tight with no visible gaps
- » Ensure the connection feels solid when gently tested
- » Verify screws are flush with the wood surface
- » Clean any remaining excess glue

Important Notes

- » This technique applies to ALL joints in your cabin except simple joint types (detailed in paragraph 15 of your manual)
- » Weather conditions matter avoid gluing in very cold or wet conditions
- » If you make a mistake, it's better to start over than to have a weak connection
- » Take breaks fatigue leads to mistakes with these precision connections


Common Mistakes to Avoid


- » Rushing the glue application
- » Not predrilling pilot holes
- » Placing screws parallel to wood grain
- » Not cleaning excess glue promptly
- » Forcing misaligned connections

Remember:

Each connection you make affects the overall strength and weather-resistance of your entire cabin. Taking extra care at this stage will save you maintenance headaches and ensure your cabin stands strong for decades.

LOGS LOCKING PRINCIPLE

When assembling cabin walls with non-solid parts that need to be connected, proper locking technique is essential for structural integrity and ease of assembly.

Key Benefits

- » Easier Assembly: Helps maintain proper levels during construction
- » **Enhanced Stability:** Provides greater structural strength to the cabin
- » Professional Results: Ensures walls are properly aligned and secure

Important Note:
This technique only works with symmetrical parts

Assembly Methods

WRONG WAY - Avoid This Method

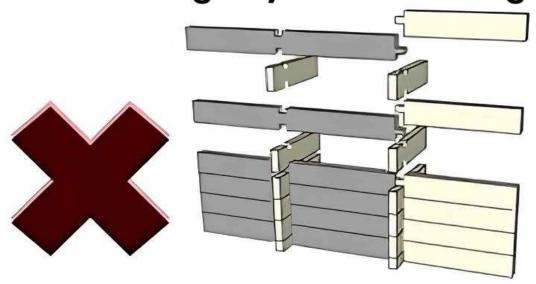
- » Logs are stacked without proper interlocking
- » Results in weaker structure
- » Difficult to maintain proper levels
- » Less stable overall construction

CORRECT WAY - Recommended Method

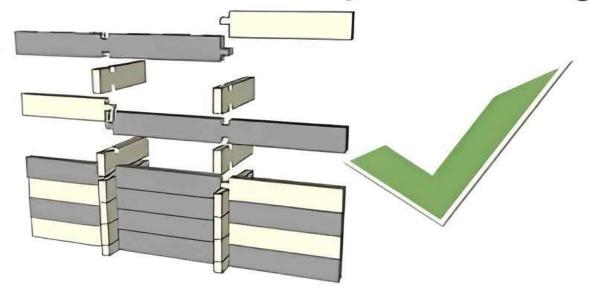
- » Logs are properly interlocked in alternating pattern
- » Each log locks into the one below it
- » Creates strong, stable wall construction
- » Maintains proper alignment automatically

Best Practices

- 1. Check Part Symmetry: Ensure your log parts are symmetrical before using this method
- 2. Follow the Pattern: Alternate the direction of each log layer
- 3. Maintain Levels: The locking system helps keep everything level as you build
- 4. **Quality Control:** Double-check each connection as you progress


Result

When done correctly, this locking method creates a self-supporting wall system that is both stronger and easier to assemble than traditional stacking methods.



LOGS LOCKING PRINCIPLE

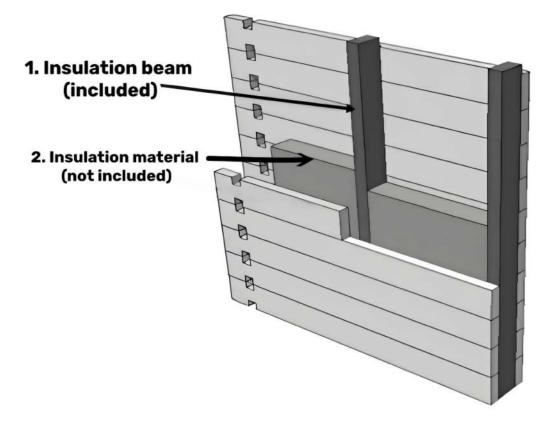
1. The wrong way to lock wall logs

2. The correct way to lock wall logs

Logs locking principle – 1. The wrong way to lock wall logs; 2. The correct way to lock wall logs.

WALL INSULATION

Note:


This insulation section specifically applies only to "Twinskin" or double wall style cabins, not to single wall cabins.

What's Included vs. Not Included:

- » Insulation beams are included (size varies based on wall gap)
- » Insulation material is NOT included you need to purchase this separately

Installation Details:

- » Insulation beams are placed every 600mm in each wall by default
- » All beams come at the same height, allowing the assembly crew to cut them to the needed height
- » Screws should penetrate about 15mm into the wall log thickness
- » Installation happens during wall assembly

Twinskin wall insulation – 1. Insulation beam (included), size according wall gap; 2. Insulation material (not included).

12

Detailed Step-by-Step Door and Window Installation Instructions

Pre-Installation Preparation

Tools Required:

- » Hammer
- » Ladder/step stool
- » Hand saw

- » Silicone sealant and application gun
- » Screwdriver
- » Level

Tools Required:

Important Timing:

 Wait until at least 5 logs are installed before mounting doors for easier access and structural stability

Important Warnings

⚠ CRITICAL: Never attach frames directly to walls with nails or screws

⚠ CRITICAL: Never fill expansion gaps with solid materials

⚠ CRITICAL: Ensure proper orientation before final installation

Quality Control Checklist

Before completing installation, verify:

- » Correct window/door orientation
- » All silicone properly applied
- » Expansion gaps maintained
- » Drip caps installed (if applicable)
- » No direct attachment to walls
- » Frames properly centered
- » All edgings securely fastened

12

Step 1: Prepare for Water Protection

1.1 Silicone Application for Windows

- 1. Unscrew internal window/door edgings from the frame
- 2. **Apply silicone sealant** to the inner side of external edgings
- 3. **Add extra silicone on top** of the frame to prevent water infiltration
- 4. Allow silicone to set according to manufacturer's instructions

1.2 Door Panel Weatherproofing

- 1. Apply silicone to all edges of the door's solid panel where tongue-and-groove boards meet
- 2. This prevents rainwater from running down the T&G boards and penetrating joints

Window installation – 1. Unscrew internal window / door edgings; 2. Apply silicone on the external edgings inner side; 3. Extra silicone on top to prevent water.

12

1. Place door and window in their places and screw back the inner edgings

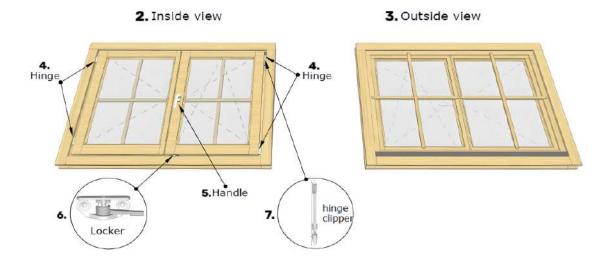
Window inside/outside view – 1. Make sure that you are fixing the right side of window; 2. Inside view; 3. Outside view; 4. Hinges; 5. Handle; 6. Locker; 7. Hinge clipper

Step 2: Verify Correct Orientation

2.1 Window Orientation Check

- » Regular windows: Handle should be on the inside
- » "EV" windows: Handle will be on the outside (opposite of regular windows)
- » **Doors:** Use the provided floor plan to determine correct orientation

2.2 Identify Components


From inside view, locate:

- » Hinges (left side)
- » Handle (bottom center)
- » Locker mechanism
- » Hinge clipper

12

1. Be sure that you are fixing the right side of windows

Window inside/outside view – 1. Make sure that you are fixing the right side of window; 2. Inside view; 3. Outside view; 4. Hinges; 5. Handle.

Step 3: Install Windows and Doors

3.1 Positioning

- 1. Place door/window in their designated openings
- 2. **Center the frame** to ensure even expansion/contraction gaps on all sides (except bottom)
- 3. **Verify gaps are present** these should already be cut in the wall structure

3.2 Securing

- 1. Screw back the inner edgings to secure the window/door in place
- 2. **DO NOT nail or screw frames directly to walls** this prevents damage from wood expansion/contraction

12

Step 4: Critical Gap Management

4.1 Expansion/Contraction Gaps

- » Maintain gaps between frame and walls on top and sides (not bottom)
- » Never fill gaps with solid materials this can cause:
 - » Wall gapping
 - » Splitting
 - » Cracking
- » Gaps will be covered by the door/window frames themselves

Step 5: Install Drip Caps (Recommended)

5.1 Drip Cap Installation

- 1. Position drip caps 50mm higher than door and window frame tops
- 2. This accounts for potential log settling over time
- 3. Apply silicone between drip caps and wall where they join
- 4. Cut angles yourself if ordering drip caps from supplier

5.2 DIY Drip Cap Option

- » Use leftover cabin parts to create your own drip caps
- » Ensure proper angling for water runoff

Step 6: Final Weatherproofing

6.1 Complete Silicone Sealing

Apply silicone to all red-marked areas including:

- » All frame edges
- » Between drip caps and wall
- » Any remaining joints that could allow water penetration

6.2 Ongoing Maintenance

- » Monitor silicone condition regularly
- » Renew silicone as needed since it loses properties over time
- » Check for any gaps or cracks that develop

12

Protecting door/window – 1. Apply silicone to the red-marked spots, including between the drip caps and the wall; 2. Drip caps

13

Tools Required:

- » Silicone sealant and application gun
- » Electric drill with various drill bits
- » Screws and screwdriver bits
- » Level (bubble or laser)

- » Measuring tape
- » Pencil for marking
- » Saw (for potential wall cutting)
- » Safety equipment (goggles, gloves)

Before You Begin

- » Always check the floor plan first to determine door opening direction
- » Verify all components are present and undamaged
- » Ensure wall logs are straight and properly aligned
- » Confirm the base/foundation is level

13

Single door installation

Step 1: Pre-Assembly Inspection

- » Door Preparation: Single doors arrive fully pre-assembled
- » Frame Check: Inspect the door frame for any damage during shipping
- » Tolerance Verification: The frame includes built-in tolerance for wall log fitting
- » Opening Direction: Confirm correct orientation using floor plan

Step 2: Wall Preparation

- » Level Check: Ensure the doorsill area is absolutely level with the base
- » Log Alignment: Verify that wall logs on both sides are straight
- » Frame Batten Check: Ensure frame battens are properly aligned

Step 3: Special Considerations for Tall Doors

For 2096mm Height Doors:

- » Cutting Requirements: May require cutting wall section above door frame
- » Cut Specifications: Use drawings to identify cutting line
- » Cut Depth: Precisely 65.5mm deep
- » Safety: Use proper cutting tools and safety equipment

Step 4: Installation Process

For 2096mm Height Doors:

1. Silicone Application:

- » Apply continuous bead of silicone sealant around door frame perimeter
- » Ensure even coverage for weather sealing

2. Frame Positioning:

- » Carefully slide door frame into position
- » Do not force frame should fit smoothly due to built-in tolerance
- » If resistance occurs, check log and batten alignment

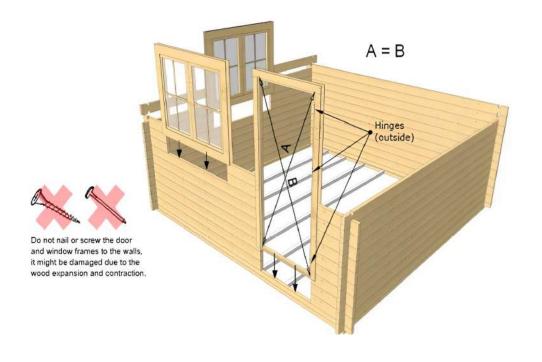
3. Gap Management:

- » If frame doesn't fit around logs, carefully cut wall logs
- » Maintain approximately 5mm gap between door and wall
- » This gap allows for natural wood expansion/contraction

13

Step 5: Critical Installation Rules

- » Level Check: Ensure the doorsill area is absolutely level with the base
- » Log Alignment: Verify that wall logs on both sides are straight
- » Frame Batten Check: Ensure frame battens are properly aligned


IMPORTANT - NEVER nail or screw door frames directly to walls

- » Wood expansion and contraction will damage the frame
- » This will void warranty coverage
- » Frame should be held in place by proper fit and wall log pressure

WARNING

Do not nail or screw the door and window frames to the walls, it might be damaged due to the wood expansion and contraction.

13

DOUBLE DOOR INSTALLATION

Phase 1: Component Identification and Preparation

Step 1: Parts Inventory

Frame Components:

- 1. Door panels (2 pieces)
- 2. Side frames (2 pieces)
- 3. **Top frame** (1 piece)
- 4. Threshold (1 piece, initially placed in top frame)
- 5. Door/window decoration elements
- 6. Hardware (handles, fixing clippers, screws, pins)

Step 2: Pre-Assembly Examination

- » Part Identification: Clearly identify each component before assembly
- » Threshold Removal: Remove threshold from top frame packaging
- » Drawing Reference: Study provided drawings to understand your specific door configuration
- » Hardware Check: Verify all screws are present and in correct positions

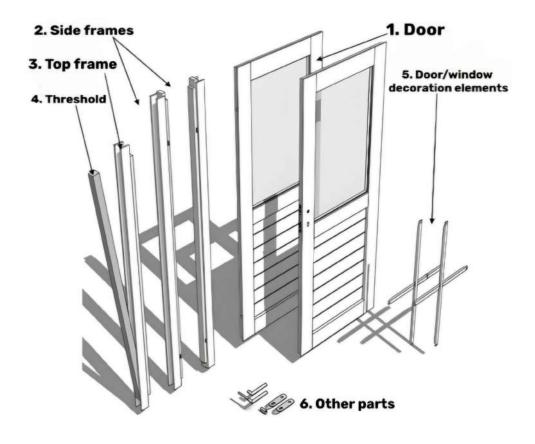
Phase 2: Frame Assembly

Step 1: Initial Frame Construction

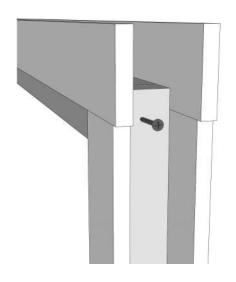
Assembly Sequence:

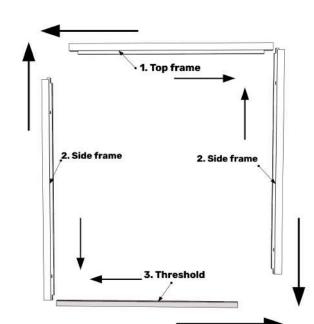
- 1. Start with corners: Begin with the furthest corners as shown in diagrams
- 2. First Connection: Attach top frame to one side frame
- 3. Second Connection: Connect threshold to the other side frame
- 4. **Note:** Screws are pre-positioned for easy assembly

Step 2: Complete Frame Assembly


- 1. Rectangle Formation: Screw both sub-assemblies together to form perfect rectangle
- 2. Measurement Verification:
 - » Ensure distance between side frames is identical at top and bottom
 - » Use measuring tape to verify squareness
 - » Check diagonal measurements for perfect rectangle

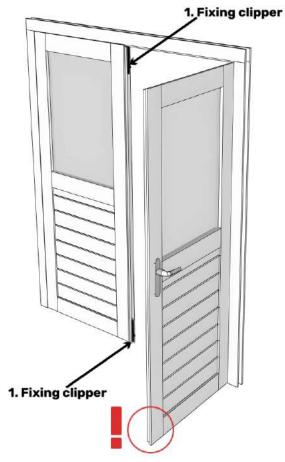
Step 3: Frame Quality Control


- » Square Check: Verify all corners are 90 degrees
- » Stability Test: Ensure frame is rigid and doesn't flex
- » Hardware Tightness: Confirm all screws are properly tightened



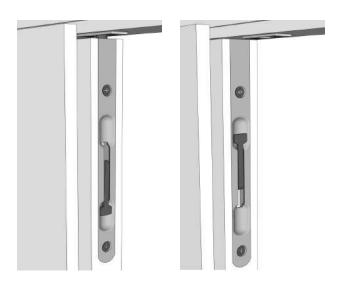
13

Double door – 1. Door; 2. Side frames; 3. Top frame; 4. Threshold; 5. Door/window decoration elements; 6. Other parts (handles and ect.)

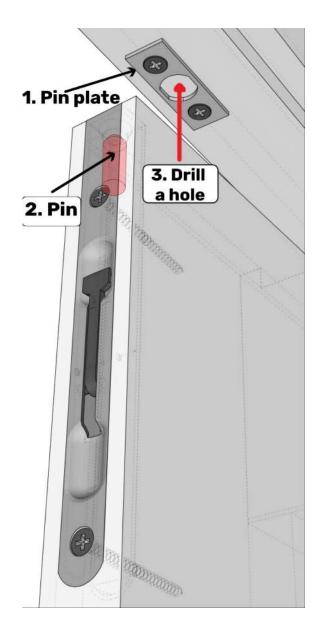


13

Frame screwing - Screw just threshold



Door locking - 1. Fixing clippers



13

Door locking - 1. Fixing clippers

Pin installation – 1. Pin plate; 2. Pin; 3. Drill a hole

13

Phase 3: Installation Timing and StorageStep 1: Parts Inventory

Critical Timing Rule

Door mounting must be the VERY LAST step in cabin assembly

Interim Storage Guidelines

If assembly spans multiple days:

- » Outdoor Storage: Place finished door frame outside under open sky
- » **Reason:** Ensures consistent weather exposure with rest of cabin
- » Color Matching: Allows door to develop same sun-darkened tone as cabin walls
- » **Protection:** Cover if rain is expected, but allow air circulation

Phase 4: Door Operation System

Understanding the Double Door Mechanism

Two-Part System:

- » **Primary Door:** Opens with standard handle mechanism
- » Secondary Door: Secured with fixing clippers (top and bottom)

Opening Procedure

Sequential Opening:

- 1. **First:** Open the door with the handle (primary door)
- 2. **Second:** Operate fixing clippers on secondary door:
 - » Top Clipper: Lift lever UP
 - » Bottom Clipper: Push lever DOWN
- 3. Result: Both doors can now swing open

Closing Procedure

Reverse the opening sequence:

- 1. Close secondary door first
- 2. Engage fixing clippers (top down, bottom up)
- 3. Close primary door with handle

13

Phase 5: Final Adjustments and Hardware Installation

Hinge Adjustments

- » Initial Positioning: Doors are fixed from above with hinges on outside
- » Fine Tuning: Adjust by tightening or loosening hinge screws
- » Alignment Check: Ensure doors hang properly and close evenly

Lock Installation Process

Pin Plate Installation:

- 1. Measurement Phase:
 - » Close doors in final position
 - » Mark exact location where pins will contact frame
 - » Use pencil for precise marking

2. Drilling Phase:

- » Hole Size: Match drill bit to pin diameter
- » Depth: Drill slightly deeper than pin length
- » Precision: Ensure holes are perpendicular to frame

3. Installation Phase:

- » Pin Plate Mounting: Screw pin plates into drilled holes
- » Alignment Verification: Test pin engagement multiple times
- » Operation Check: Verify smooth clipper operation

Critical Maintenance Point

ESSENTIAL ONGOING CHECK:

- » Regular Inspection: Periodically check that lower door edge doesn't touch threshold when closing
- » Warning Signs: Look for scraping marks, resistance when closing, or door binding
- » Adjustment Method: Use hinge adjustments to correct any contact issues
- » Warranty Impact: Door damage from threshold contact is NOT covered by warranty
- » Prevention: This simple check prevents door warping and operational problems

Phase 6: Troubleshooting Common Issues

Frame Fit Problems

If frame doesn't fit easily:

- » Check wall log straightness
- » Verify foundation level
- » Adjust log positioning before forcing frame

13

Door Alignment Issues

If doors don't close properly:

- » Adjust hinges incrementally
- » Check frame squareness
- » Verify threshold level

Hardware Problems

If clippers don't engage smoothly:

- » Recheck pin plate alignment
- » Verify hole depth and diameter
- » Ensure clipper mechanism moves freely

Safety and Warranty Considerations

Installation Safety

- » Never use excessive force during any installation step
- » Proper lifting techniques when handling heavy door assemblies
- » Eye protection when drilling or cutting
- » Secure work area to prevent accidents

Warranty Protection

- » No direct fastening of frames to walls
- » Proper threshold clearance maintenance
- » Professional installation recommended for complex situations
- » Follow all manufacturer specifications exactly

Long-term Maintenance

- » Annual hinge lubrication
- » Regular threshold clearance checks
- » Weather seal inspection and replacement
- » Hardware tightness verification

13

Final Installation Checklist

Before Completion

- » All frame connections secure
- » Doors operate smoothly
- » Clippers engage and disengage properly
- » No contact between door bottom and threshold
- » Weather sealing complete
- » All hardware properly tightened

Post-Installation

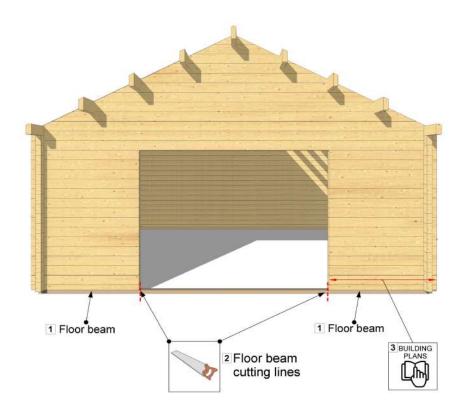
- » Test full door operation cycle multiple times
- » Verify lock security
- » Check for any air leaks
- » Document installation date for warranty purposes
- » Schedule first maintenance check

Remember: Patience during installation prevents damage and ensures long-term door performance. When in doubt, consult the manufacturer or a professional installer.

GARAGE DOOR

Garage Door Installation Process

1. Floor Beam Preparation

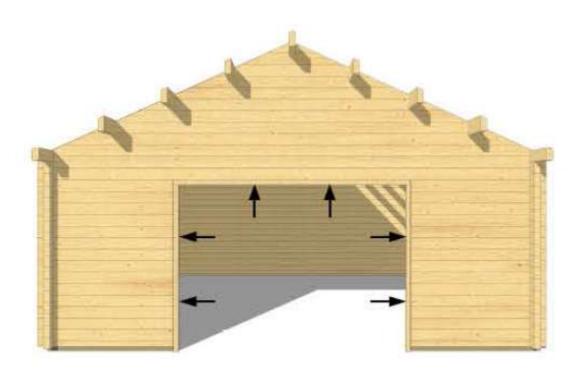

- » The floor beams initially come as solid squares without pre-cut openings
- » You need to carefully study the building plans to determine the exact door location
- » Mark cutting lines on the floor beams where the door opening will be
- » Cut the floor beams at the marked locations before starting assembly

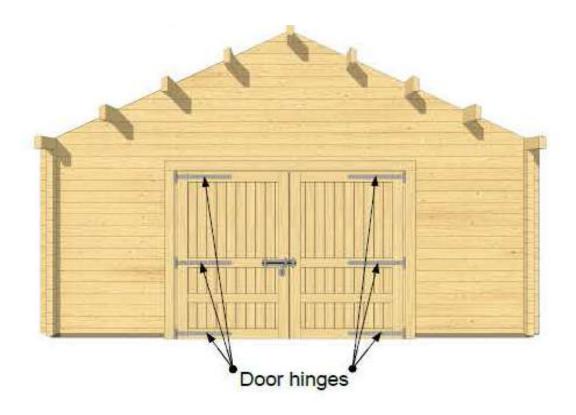
2. Door Frame Installation

- » After cutting the floor beams, install the door frame pieces
- » Position the frame components in the correct places within the opening
- » Secure the frame to the walls with screws

3. Door Installation

- » The doors come separately from the hinges for easier adjustment
- » This allows you to adjust door height and ensure proper alignment on-site
- » Attach the doors to the frame using the provided hinges

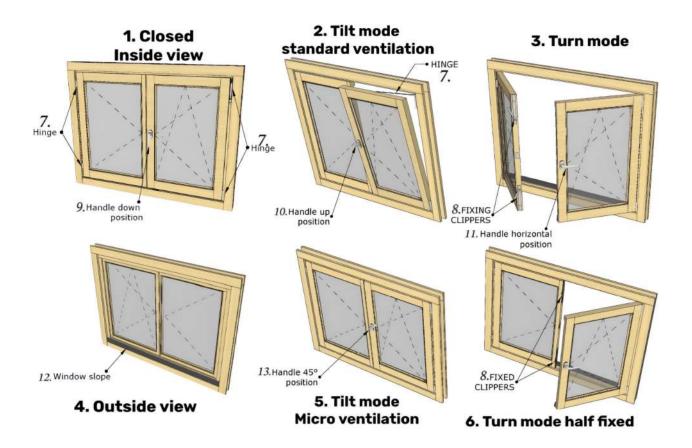

Garage door installation -


- 1. Floor beams;
- 2. Floor beams cutting lines

www.midaltfgbtorgets.com 55

GARAGE DOOR

WINDOW


WORKING PRINCIPLE (Opens inside)

There are two main points to know:

Two ways to open the window:

- » the handle
- » fixing clippers

- » to tilt
- » to turn

X window working principle – 1. Closed inside view; 2. Tilt mode standard ventilation; 3. Turn mode; 4. Outside view; 5. Tilt mode micro ventilation; 6. Turn mode half fixed; 7. Hinges; 8. Fixing clippers (fixed/unfixed); 9. Handle down position; 10. Handle up position; 11. Handle horizontal position; 12. Window slope; 13. Handle 45-degree position.

REPLACING BROKEN/ DAMAGED GLASS

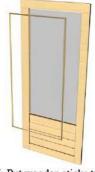
16

Key Safety Point: Remove the window/door from its frame and work on the ground for safety.

The 6 Steps:

- 1. **Loosen the trim** Use a knife or screwdriver around the wooden trim to carefully loosen the nails
- 2. **Remove the trim** Take off the trim that holds the glass in place (be careful as it breaks easily)
- 3. **Remove broken glass** Take out the damaged glass, checking for any leftover nails or cutting around glass corners with a sharp knife if needed
- 4. **Install new glass** Put the new glass in place (optionally, you can add a thin layer of sealant around the trim edges for better protection against wind and water)
- 5. Replace the trim Put the wooden trim back and secure it with nails using a small hammer
- 6. Reinstall Put the window/door back into its frame

1. Use knife/screwdriwer around wooden sticks trim to carefully loosen nails.


Remove trim which holds glass (be careful as it breaks easily).

 Remove broken/damaged glass (if something still holds it, check for leftover nails or cut around glass corners with sharp knife).

 Put new glass into the place (*Optional - use thin layer of sealant around trim edges for better protection against wind/water).

 Put wooden sticks trim back into the place and fix it with nails as it was. (Use small hammer)

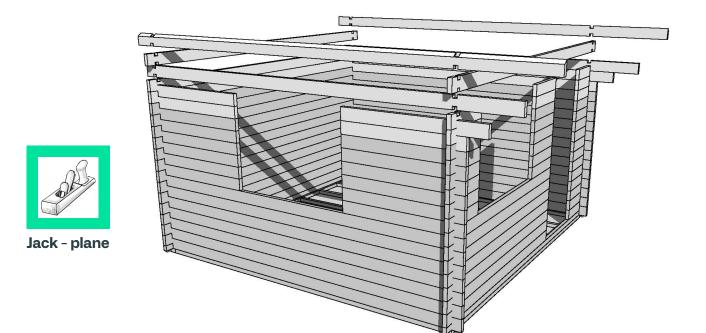
Put window/door back into its frame.

FINAL WALL PARTS

Tools Required:

A level, ladder, clamp, hammer, chisel, and screw, with special emphasis on the jack plane (highlighted in the red box) which will be particularly useful for fine-tuning the angles and fit.

Tools



Key Points:

The final wall parts at the very top have unique angled corners that need to contact the roof. You may need to adjust these corners to achieve a proper fit with the roof structure.

Important Tip:

Take your time with the last two cornered parts they must align evenly with the roof's triangular shape for a proper finish.

THE CONNECTION OF TOP LOGS

18

The Connection of Top Logs (Simple Joint Type)

Overview

Some cabin models feature top logs with a simple joint connection system. This method uses pre-marked joint lines on the logs that need to be aligned and connected properly.

What You'll Need

- » Adhesive: Silicone sealant OR wood glue
- » Tools: Application gun for silicone (if using) or brush for wood glue
- » Reference: Your cabin's axis drawing/assembly diagram

Step-by-Step Instructions

1. Identify Your Log Type

- » Check if your cabin model has top logs with simple joint markings
- » Look for visible lines on the top logs these indicate the joint locations
- » Refer to your specific cabin's axis drawing for the correct configuration

2. Locate the Marked Parts

- » Find all top log pieces that need to be connected
- » Identify the joint lines on each log piece
- » Match the corresponding pieces according to your assembly diagram (typically labeled as sections A and B)

3. Prepare the Joint Areas

- » Clean the joint surfaces to remove any dust or debris
- » Ensure the joint lines align properly when pieces are placed together
- » Test fit the pieces before applying adhesive

THE CONNECTION OF TOP LOGS

18

4. Apply Adhesive

Choose ONE method:

Option A - Silicone:

- » Apply a continuous bead of silicone along the joint line
- » Use enough to ensure good coverage but avoid excess that will squeeze out

Option B - Wood Glue:

- » Apply wood glue evenly along the joint surface
- » Spread with a brush or applicator for uniform coverage

5. Connect the Logs

- » Carefully position the marked parts next to each other
- » Align the joint lines exactly as shown in your axis drawing
- » Press firmly to ensure good contact and adhesion
- » Remove any excess adhesive that squeezes out immediately

6. Secure the Connection

- » Hold the pieces in position until the adhesive begins to set
- » Follow the adhesive manufacturer's recommended curing time
- » Avoid moving or stressing the joint during the curing period

Important Notes

- » Always reference your specific cabin's axis drawing for exact positioning
- » The connection method creates a strong, permanent joint
- » Work in suitable weather conditions if using outdoors
- » Allow proper curing time before proceeding with additional assembly steps

ROOF TRIANGLES

Tools Required:

- » Measuring level
- » Ladder
- » Tool case/storage box
- » Hand saw
- » Hand plane

Tools

Key Instructions:

- 1. **Check final levels and heights** This is emphasized as an important preliminary step before installation
- 2. **Triangle construction varies** Some triangles may be solid single pieces, others assembled from multiple parts
- 3. **Installation method** Carefully attach triangles to the top of the walls and secure them in place

ROOF BEAMS

Roof Beam Types

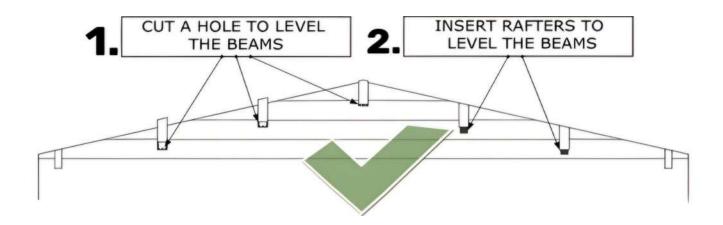
There are two types of roof beams depending on your cabin design:

- » Vertical beams positioned perpendicular to the roof line
- » Angled beams positioned at an angle following the roof slope

Installation Process

Initial Placement: Place all beams into their designated positions on the roof triangle framework. All beams must align properly with the roof triangle to ensure proper roof board installation later.

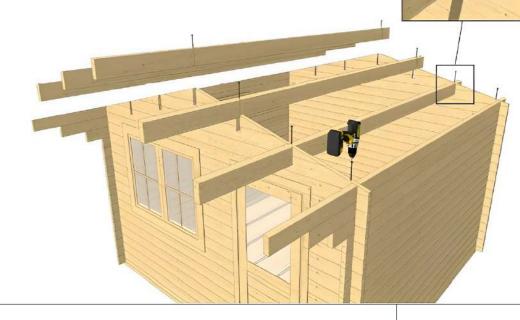
Checking Alignment: If beams don't align properly with the roof triangle, you must fix the mismatch before proceeding, as this will cause problems when installing roof boards.



ROOF BEAMS

Fixing Misalignment

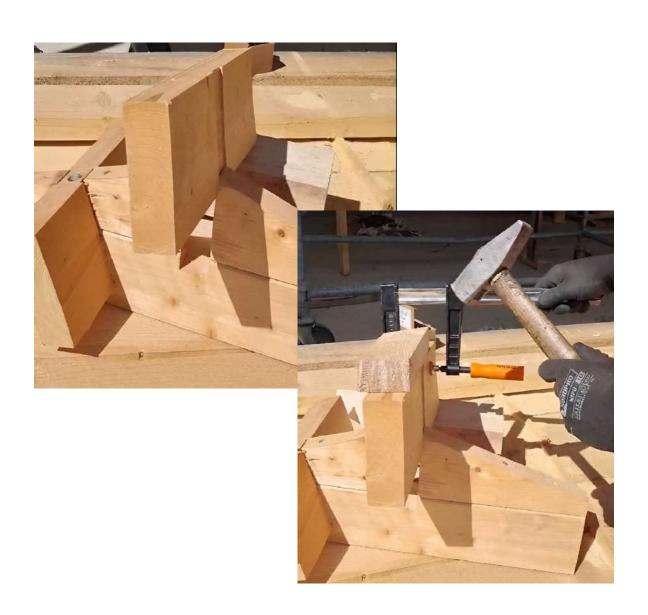
The document shows two methods to correct beam alignment:


- 1. Cut deeper holes If beams sit too high, cut the triangle deeper to lower the beam position
- 2. **Add rafters** If beams sit too low, insert additional wood pieces (rafters) underneath to raise them to the proper level

Fixing roof beams level – 1. Cut a hole to level the beams down; 2. Insert rafters to level the beams up

Final Steps

- » Ensure all cornered wall parts in the triangle are properly aligned
- » Once levels and mismatches are corrected, secure the roof triangles and beams by screwing them together
- » Make sure triangles are stable before adding any rafters, as they will remain permanently in place

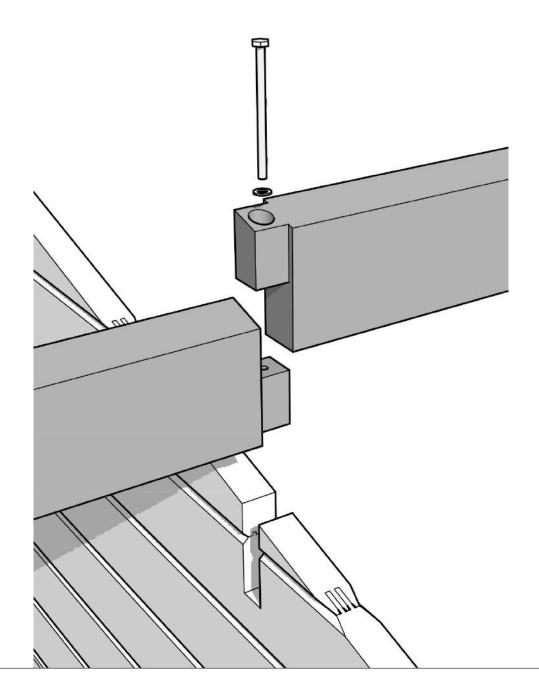


ROOF BEAMS

Troubleshooting Tips

- » If beams become twisted before assembly and won't fit into their locks, use a woodworking clamp to rotate the beam until it fits properly
- » Use a hammer with a protective piece of wood to gently knock beams into place if needed

This careful attention to beam alignment is crucial for the structural integrity and proper installation of the roof system.



21

Main Roof Beam Connection Process:

Sequence is critical - the document emphasizes following the proper order:

- 1. **Preparation:** Gather all necessary parts for beam assembly
- 2. **Ground Assembly:** Connect beam parts together on the ground first (but don't screw them yet), ensure straight alignment, then screw them together
- 3. Installation: Place the assembled beams on top of the roof triangle

21

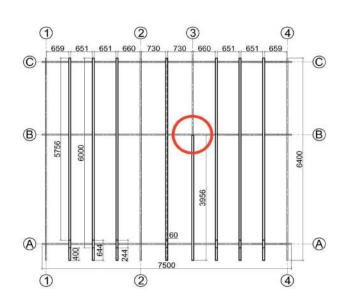
Special Case - Roof Beam to Wall Connection:

Critical Rule: Don't Modify Beam Lengths

- » All beams come in equal lengths as designed
- » Never cut beams to change their length this compromises the structural integrity and engineering

Structural Function

- » Short beams that terminate at walls still carry roof loads
- » The wall becomes a critical support point it's not just holding the beam, it's supporting that section of the roof structure
- » This creates a different load distribution compared to beams that span completely across


Why Precision Matters

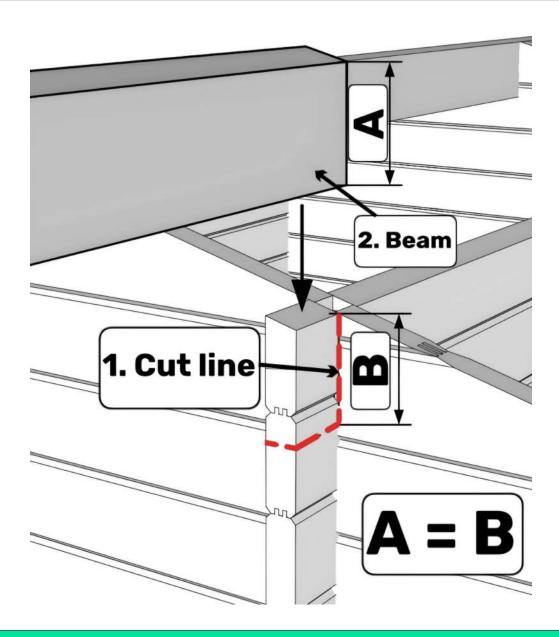
- » There's a "very thin line between a good job and a mistake"
- » Poor execution can add hours of rework to the project
- » Precise calculations are essential because:
 - » The beam must align perfectly with the wall
 - » The connection point affects structural integrity
 - » Any misalignment impacts the entire roof system

You're not just making a simple cut - you're creating a precise structural connection where the wall must perfectly support both the beam and the roof load above it.

The emphasis on starting with the shortest beam first also makes more sense with this understanding - since you may need to make multiple attempts to get the precision right, it's better to work out the technique on the most challenging piece first.

Roof plan

21


Tools that will be useful or necessary:

Tools

Roof beam connection to the wall - 1. Cutting line; 2. Roof beam

21

RECOMMENDATION FOR A BEAM CONNECTION

This recommendation addresses a specific structural vulnerability in cabin construction:

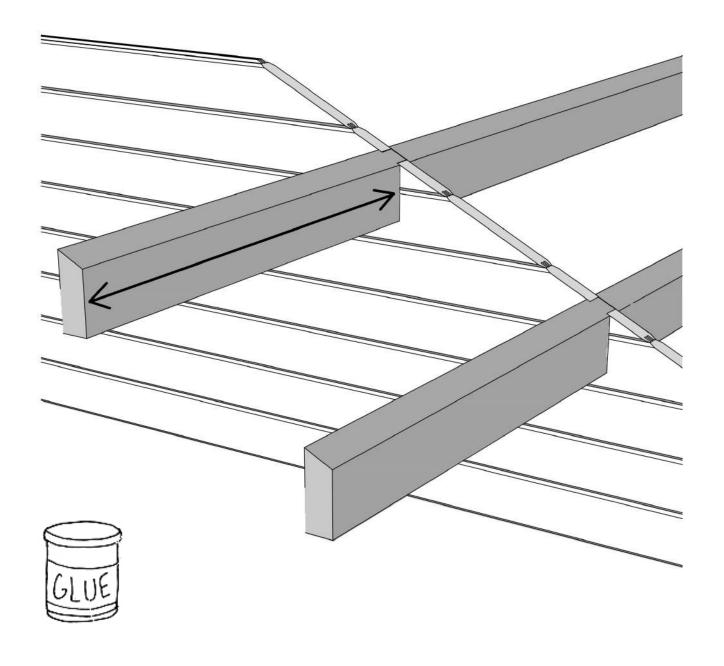
When This Applies:

- » Edge beam connections where the beam is at the perimeter of the cabin
- » Cantilever situation the other end of the beam extends out with no support from below
- » Creates a "floating" beam end that relies entirely on the connection point for structural integrity

Why Glue Reinforcement is Needed:

- » Increased stress concentration all the load from the unsupported beam end transfers through the single connection point
- » **No redundant support** unlike beams with support at both ends, failure of this connection could be catastrophic
- » Dynamic loads wind, snow, and thermal expansion put additional stress on these edge connections

Application Method:


- » Apply glue around the connection lock mechanism
- » This strengthens the mechanical joint and reduces movement/loosening over time
- » Creates a more permanent, weather-resistant bond

This is essentially an engineering upgrade for the most structurally demanding beam connections in the cabin. The illustration would show how a beam extending beyond the cabin's support structure creates a lever arm effect, making the wall connection point bear significantly more stress than interior beam connections.

This recommendation shows good attention to real-world structural performance - recognizing that not all beam connections face the same loads and adjusting the construction method accordingly.

21

ROOF BOARDS

Tools that will be useful or necessary

- » screwdriver
- » hammer
- » drill
- » saw
- » ladder
- » crews

Tools

Roof Board Installation Process

Materials: Roof boards sized 105 x 19 mm

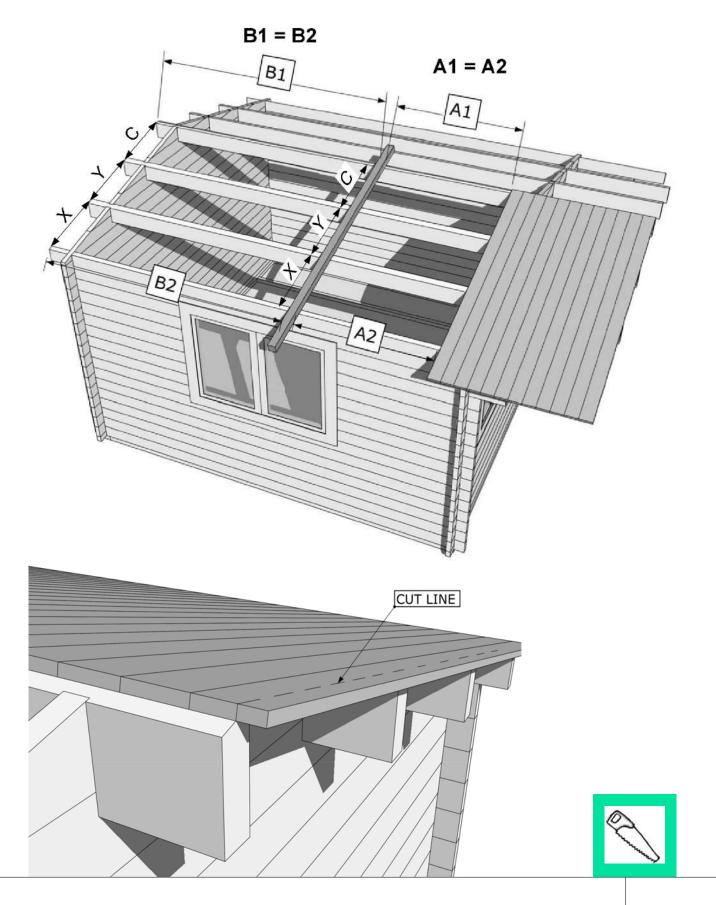
Key Steps:

1. **Setup:** Install a straight log or plank in the middle of the roof as a reference guide for measurements

2. Measurement Rules:

- » When B1=B2 (roof sides are equal), it's easier to check A1 and A2 measurements
- » Use the center plank to verify all spacing between roof beams (X, Y, C)
- » Adjust any misaligned beams by bending and temporarily screwing to the center log

3. Installation Strategy:


- » Start from the front and work backward
- » Install boards side by side, checking for gaps or misalignment
- » Keep bottom and top edges in straight lines (use string lines as guides)
- » Follow the rule: A1=A2 until reaching the middle

4. After Middle Point:

- » Remove the temporary center plank
- » Switch to following the rule: **B1=B2**
- » Complete one side to the edge (may need to cut the final board to fit)
- » Repeat the same process for the other side

ROOF BOARDS

ROOF INSULATION

This document shows instructions for installing roof insulation in a cabin. The process involves creating a layered roof system with insulation beams that run perpendicular to the main roof beams for proper weight distribution.

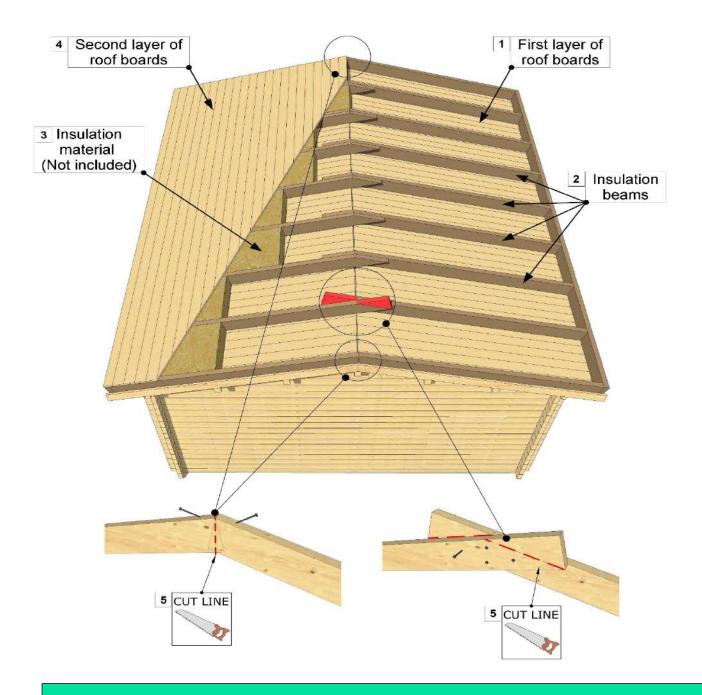
Here's what the process entails:

Components included:

- » Insulation beams (standard 100mm height, custom heights available on request)
- » Most beam lengths come pre-cut, with only top portions requiring trimming

Installation steps:

- 1. Install the first layer of roof boards
- 2. Place insulation beams perpendicular to the roof beams (following the cutting lines marked on the beams)
- 3. Add insulation material between the beams (not included with the kit)
- 4. Cover with a second layer of roof boards


Key points:

- » The insulation beams run in a different direction from the structural roof beams to distribute weight properly
- » You'll need to source your own insulation material (rockwool, fiberglass, etc.)
- » The diagram shows the cutting lines (marked in red) where you'll need to trim the beam ends to fit properly

This creates an effective insulated roof system that maintains structural integrity while providing thermal protection for the cabin. The perpendicular beam arrangement is important for load distribution and prevents thermal bridging.

ROOF INSULATION

Roof insulation for standard roof covering -

- 1. First layer of roof boards
- 2. Insulation beams
- 3. Insulation material (not included)
- 4. Second layer of roof boards
- 5. Cutting lines

EAVE FASCIA

Tools Required:

- » ladder
- » chisel
- » hammer
- » screws
- » and what appears to be a drill

Tools

Purpose: The eave fascia is a plank that gets fixed to the side of the roof, and this step prepares the roof for both apex fascia and eave fascia installation.

Two Installation Options:

- 1. Without rainwater gutter: Uses a simpler configuration
- **2. With rainwater gutter:** Requires the side part to be fixed in a vertical position, with the 43x43mm eaves adjusted during installation

Materials Needed:

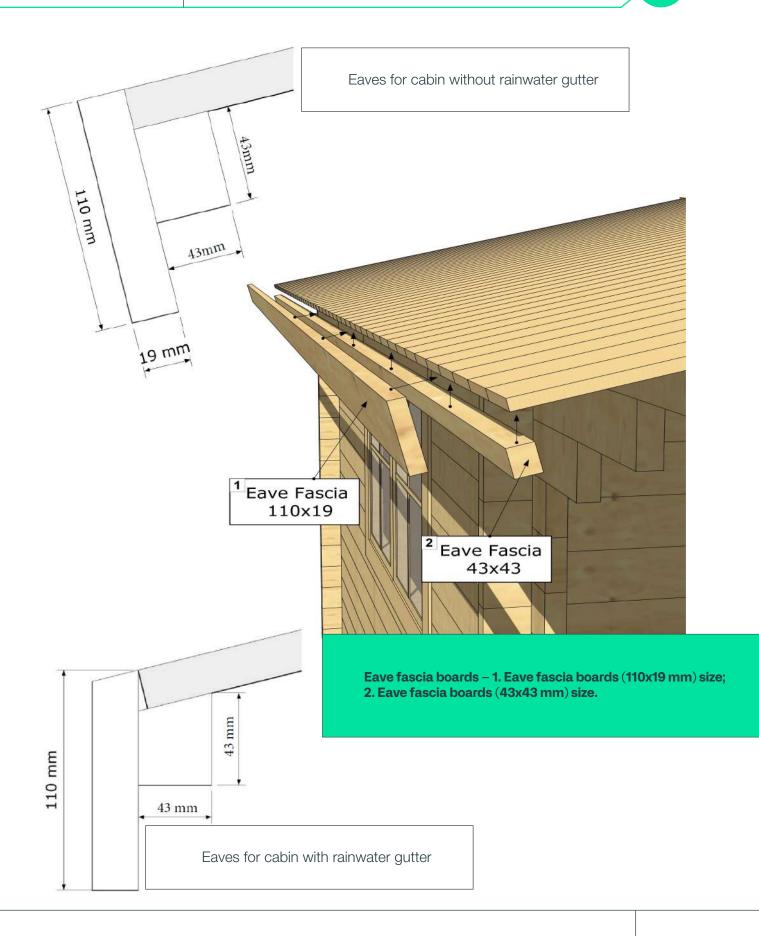
- » Eave fascia boards in two sizes:
 - » 110x19mm boards
 - » 43x43mm boards

The eave fascia specifically goes along the lower edge of the roof (the eaves), while the apex fascia would go at the peak/ridge of the roof. These boards serve both functional and aesthetic purposes:

Functional benefits:

- » Protect the roof structure from weather exposure
- » Provide a clean, finished edge to the roofline
- » Create a mounting surface for gutters (if you're installing them)
- » Help seal the roof system

Aesthetic benefits:


- » Give the roof a clean, professional appearance
- » Hide the rough cut ends of rafters and roof sheathing

At this stage in the construction process, you're moving on to installing the fascia boards, which are the finishing planks that cover and protect the exposed ends of the roof rafters.

EAVE FASCIA

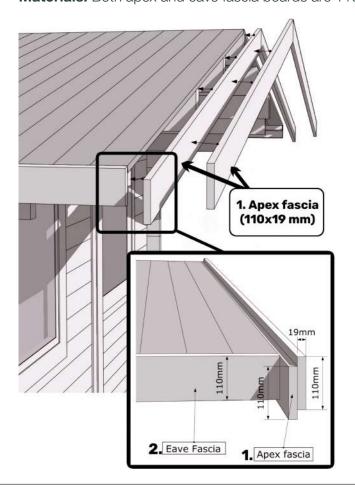
24

APEX FASCIA

Tools Required:

- » ladder
- » drill
- » hammer
- » screws
- » nails

Tools


Key points from the instructions:

Purpose: Apex and eave fascia are crucial for rainwater management and are highly visible cosmetic elements of the cabin structure.

Installation Guidelines:

- » First line of apex fascia: Should be installed flush with the roof boards (at the same level)
- » **Second line of apex fascia:** Should be raised approximately 2cm above the roof board level to properly direct rainwater toward the sides of the roof

Materials: Both apex and eave fascia boards are 110x19mm dimensions.

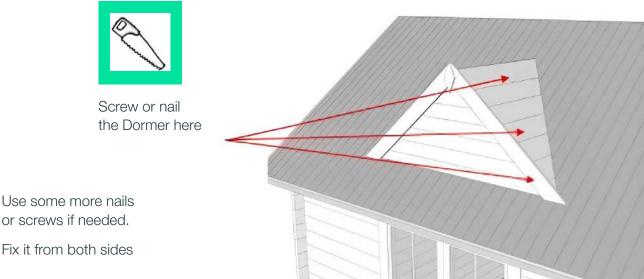
Apex fascia boards installation – 1. Apex fascia boards (110x19 mm);

2. Eave fascia boards (110x19 mm)

THE DORMER

This document provides clear instructions for installing a decorative dormer on a cabin roof. The dormer consists of three triangular pieces (one front, two sides) plus apex fascia trim.

Key points from the instructions:


Preparation considerations:

- » The dormer follows standard dimensions, so you may need to adjust it to match your specific roof angle using a saw, pencil, and ruler
- » While there are suggested placement drawings, you can position it anywhere since it's purely decorative and doesn't affect structural integrity
- » The apex fascia comes slightly longer than needed and will require trimming

Installation process:

- » Secure the dormer to the roof logs using nails or screws
- » The diagram shows attachment points along the dormer's base and sides
- » Use additional fasteners as needed for stability
- » Make sure to fix it from both sides for proper support

The visual shows the dormer mounted on a shingled roof with red arrows indicating the primary attachment points. The saw illustration emphasizes that cutting/adjusting may be necessary during installation.

Fix it from both sides

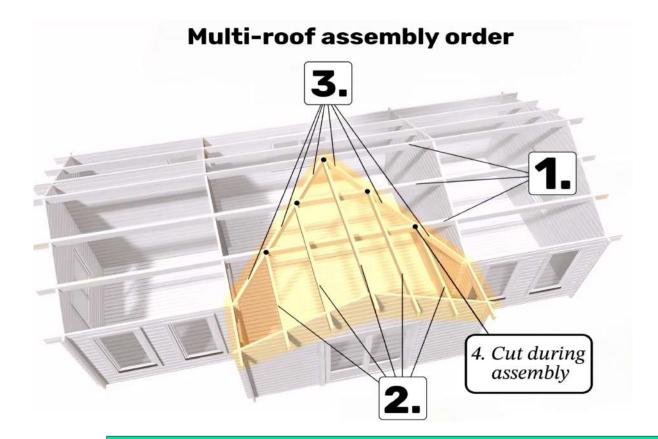
MULTI-ROOF

27

Key Points for Multi-Roof Assembly:

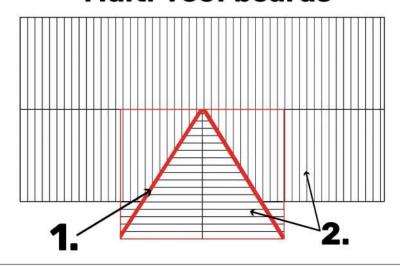
Beam Preparation:

- » Vertical beams come approximately 100mm longer than needed
- » You'll need to cut the ends where they connect with horizontal beams
- » Measure and mark cutting points by placing beams in position during installation
- » Parts from assembly step 3 come as solid pieces that must be cut during installation


Assembly Order:

- 1. Install beams that run along the entire building
- 2. Install beams that connect to the main beams
- 3. Install parts for roof board edge placement
- 4. Cut the 70x56mm parts (which come as 2 pieces) during installation

Roof Boards:


- » Come in full sizes and must be cut during assembly
- » Cut according to the thick red lines shown in the diagram
- » The thin red lines indicate the original size they come in

The diagram shows a log cabin with a complex multi-section roof system, with numbered sections (1-4) indicating the assembly sequence. The lower diagram illustrates how the roof boards should be cut, with the triangular section showing the cutting pattern.

Multi-roof assembly order – 1. Install beams that goes along the entire building; 2. Install beams that are connected to main beams; 3. Install parts for the roof boards edge placement; 4.70x56 mm parts comes as 2 pieces, which must be cut during installation.

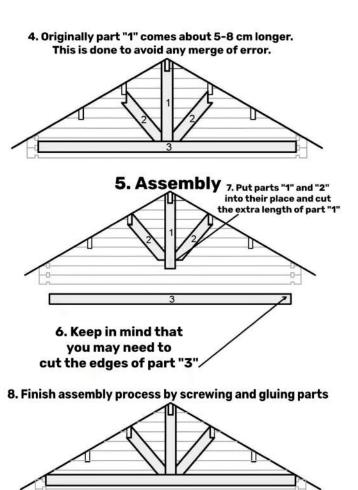
Multi-roof boards

Multi-roof boards – 1. Roof boards come in full sizes and must be cut during the assembly process according to the thick, red-marked lines (the thin red lines indicate the size in which they come); 2. Roof boards

ROOF DECORATION

This appears to be a decorative roof truss or gable detail that would sit on top of a roof structure. The design creates a traditional triangular roof profile with decorative timber-style framing elements.

The careful approach of making one piece longer initially is a smart construction technique that ensures proper fit before permanent assembly, allowing for adjustments based on the actual dimensions of the other components.


The instructions show how to assemble three main parts:

- 1. Middle part (labeled "1") the central vertical element
- 2. Side parts (labeled "2") the angled pieces that connect to the middle
- 3. Bottom part (labeled "3") the horizontal base piece

Key Assembly Steps:

The instructions emphasize that part "1" (middle part) is intentionally made 5-8 cm longer than needed to prevent fitting errors during assembly. The process involves:

- 1. Positioning parts "1" and "2" in place
- 2. Trimming the excess length from part "1" for a perfect fit
- 3. Checking if the edges of part "3" (bottom part) need trimming
- 4. Final assembly using screws and glue

FLOOR

FLOOR Assembly Instruction Guide

Tools Required

Before starting the floor installation, gather the following tools:

- » Hammer for knocking planks into position
- » Hand saw for cutting the final board to fit
- » Chisel for fine adjustments
- » Screwdriver for securing boards if needed
- » Measuring tape for accurate measurements
- » Piece of log or wood block to protect boards while hammering

Tools

Assembly Components & Specifications

The complete floor assembly consists of:

1. Floorboards

- » Thickness: 19mm or 28mm (depending on your choice)
- » Widths available: 105mm
- » Length: 6-20mm shorter than wall-to-wall distance

2. **Skirting boards**

» For finishing the edges where floor meets walls

3. Foundation beams

- » Height: 43mm
- » Typical width: 70mm
- » Supporting structure beneath floorboards

4. **Expansion gaps**

- » 3-10mm gaps required on both sides of walls
- » Essential for proper installation and wood movement

5. Additional measurements

- » Board overhang: 40mm typical
- » Wall-to-floor clearance: As specified by gap requirements

FLOOR

Pre-Installation Check

- 1. Ensure your cabin walls are properly constructed
- 2. Verify that floorboards are 6-20mm shorter than the distance between cabin walls
- 3. Check that foundation beams are level and properly positioned

Step-by-Step Installation Process

Step 1: Preparation

- 1. Open the cabin door for easy access
- 2. Start installation from the back of the cabin working toward the door
- 3. Have all tools and materials ready within reach

Step 2: Board Placement

- 1. Center the first board between the walls
- 2. Leave a 3-10mm gap on both sides between the floorboard and wall
- 3. This gap is essential for proper installation and allows for wood expansion

Step 3: Installing Boards

- 1. Place each floorboard in position
- 2. Use the hammer and piece of log to gently knock planks into place
- 3. The log piece protects the board from hammer damage
- 4. Ensure each board is properly seated and aligned
- 5. Continue this process row by row

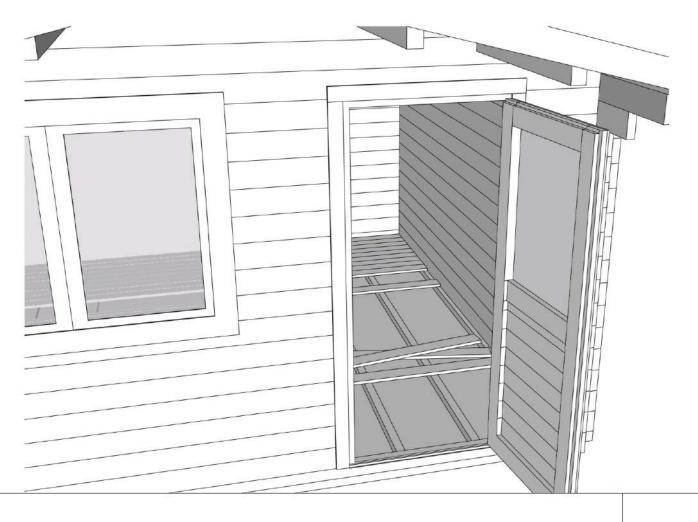
Step 4: Final Board Adjustment

- 1. The last floorboard will likely need to be cut to fit
- 2. Measure the remaining space carefully
- 3. Use the hand saw to cut the final board to the correct width
- 4. Test fit before final installation

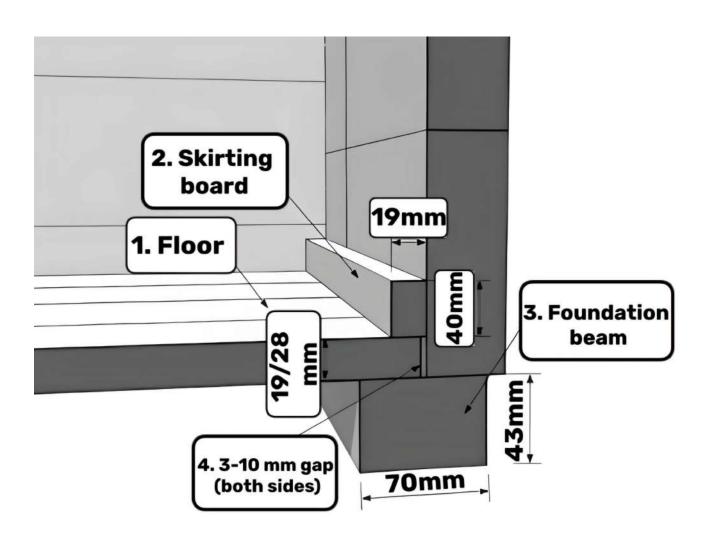
Important Tips

- » Easy installation: If the cabin was built correctly, floor assembly should be straightforward and enjoyable
- » Gap importance: Never skip the wall gaps they're crucial for proper installation
- » Work systematically: Start from the back and work toward the entrance
- » Board protection: Always use a wood block when hammering to prevent damage
- » Quality check: Ensure each board is properly seated before moving to the next

FLOOR


Safety Reminders

- » Wear appropriate safety gear when using tools
- » Keep the work area clean and free of obstacles
- » Handle tools carefully to avoid injury
- » Ensure proper ventilation when working inside the cabin


Troubleshooting

- » Boards too tight: Check if gaps at walls are sufficient
- » Boards won't fit: Verify measurements and that walls are properly constructed
- » Uneven installation: Check that foundation beams are level
- » Last board issues: Measure twice, cut once for the final piece

Following these instructions should result in a professional-quality floor installation that will serve your cabin well for years to come.

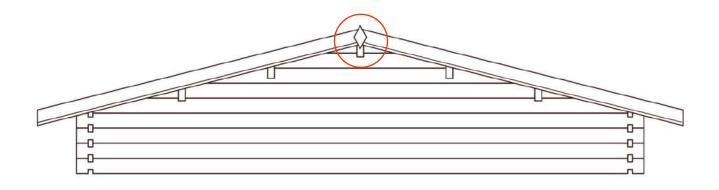
Floor – 1. Floorboards (comes in 19/28 mm thickness, depending on your choice); 2. Skirting boards; 3. Foundation beams; 4. 3-10 mm gap must be left from both sides of the wall.

THE FIINAL FINISHING TOUCHES

Now, when everything is done it is time for the final cosmetic part.

Tools that will be useful or necessary

Tools



Skirting board.

Skirting boards are used to cover the gap between the floor planks and the wall. All skirting boards are about 100mm longer than a distance between the cabin walls. So, you will have to do some work by hand, but be careful, don't cut too much. Study the Floor Plan carefully, pick and mark all the parts of a skirting board, so you would know exactly where each of it goes.

Diamond Shape

It is the very last part, which rises on top of the roof's triangle and grants the cabin its unique charm. It is fixed on top of the roof triangle and covers the connection of Apex Fascia.

31

Terrace Assembly Guide

Overview

Terraces can be constructed with or without fencing and columns, depending on your cabin type and personal preference.

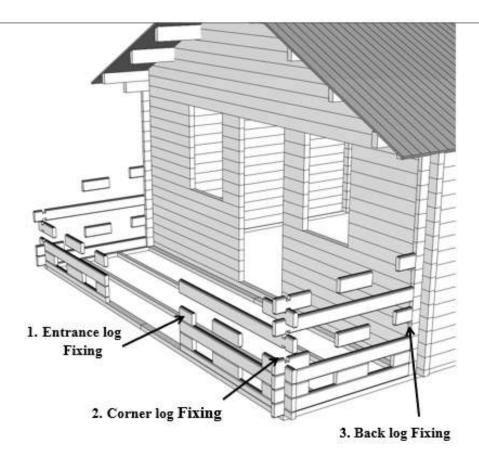
If your terrace includes fencing, carefully review your construction drawings before beginning assembly.

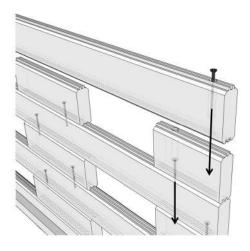
Required Tools:

» Level» Hammer» Sandpaper» Saw» Jackplane

» Drill with bits (for handrail preparation)

Tools




Terrace fence assembly – 1. Entrance log fixing; 2. Corner log fixing; 3. Back log fixing.

1. Entrance Log Installation

Method

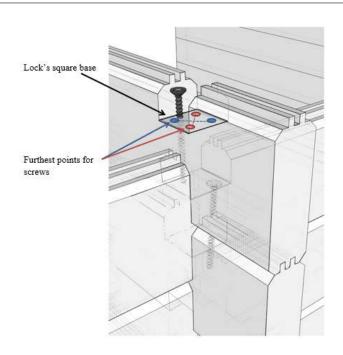
Use screws to secure all terrace walls. For a clean, professional appearance, pre-drill holes into the logs before inserting screws. This technique conceals the fasteners.

Important Considerations

- » Screw Placement Planning: Before drilling, visualize the complete assembly to avoid "screw-on-screw" conflicts where upper screws might interfere with lower ones
- » Pre-drilling Benefits: Prevents wood splitting and ensures proper screw seating
- » Hidden Fastener Technique: Creates a cleaner visual appearance

2. Corner Log Installation

Securing Method

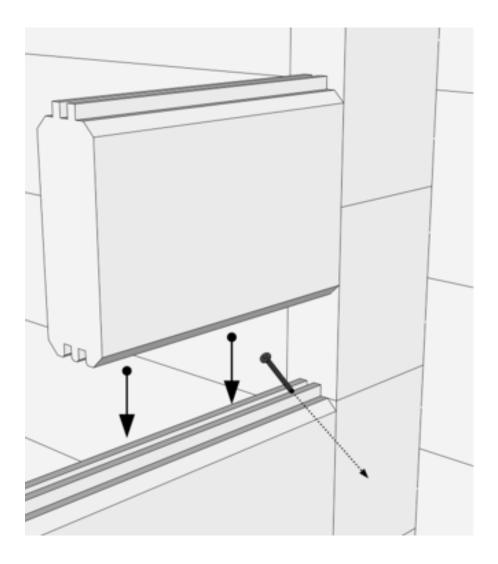

Corner logs require specialized fixing using corner locks rather than standard screws.

Best Practices

- » Screw Positioning: Place screws strategically so upper screws won't interfere with lower ones
- » **Lock Placement:** Position screws at the furthest point of the lock's square base
- » Wood Protection: This placement minimizes stress concentration and prevents cracking

Technical Details

- » Use the lock's square base as your reference point
- » Maintain adequate spacing between fastener locations
- » Check alignment before final tightening


3. Back Log Installation

Attachment Requirements

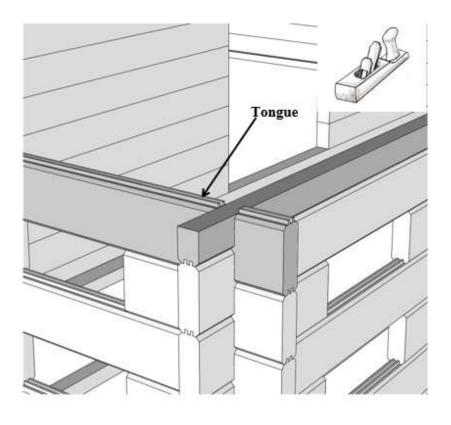
All terrace logs that contact the cabin wall must be secured to the structure.

Installation Process

- 1. Log-to-Log Connection: Use the entrance log fixing method to connect logs to each other
- 2. Wall Attachment: Additionally secure each log directly to the cabin wall with screws
- 3. Double Security: This dual-fixing approach ensures structural integrity

4. Terrace Fence Top Rail Preparation

Handrail Smoothing

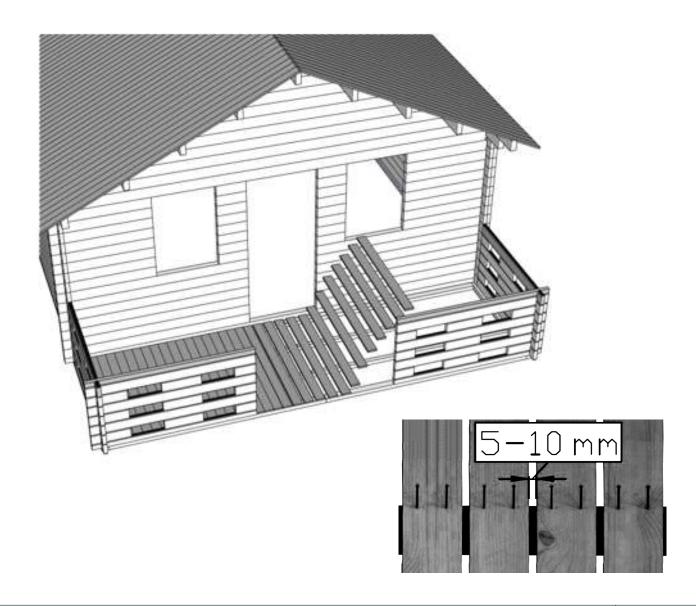

The top log may have a tongue that needs removal for a smooth handrail surface. While some logs come pre-prepared, you may need to complete this work yourself

Tools and Process

- » Required Tools: Jackplane, knife or chisel, sandpaper
- » Recommended Approach: Work on the assembled top log for stability and better visibility
- » Quality Control: The fixed position allows you to clearly see when the desired smoothness is achieved

Benefits of Working with Assembled Logs

- » Prevents movement during the smoothing process
- » Provides better visual reference for consistency
- » Ensures uniform handrail height


5. Terrace Decking Installation

Board Specifications

- » **Design:** Terrace floorboards are manufactured without tongue-and-groove connections
- » **Spacing:** Install with 5-10mm gaps between boards for drainage and expansion
- » Fastening: Secure each board with 2 nails into every supporting beam

Installation Notes

- » Final Board: The last floorboard may require cutting to fit
- » Gap Consistency: Maintain uniform spacing for both appearance and function
- » Drainage: Gaps allow water to drain through, preventing pooling

Optional Terrace Fence Parts

When Included

If your terrace features fencing and columns, your package may include approximately 1-meter length terrace pieces.

Specifications and Use

- » Dimensions: 43mm x 43mm (same as eave fascia)
- » Purpose: Cover gaps between columns and terrace fencing
- » Installation: Always supplied longer than needed trimming required during installation
- » Status: Installation is optional but recommended for finished appearance

Column Installation and Support

Structural Purpose

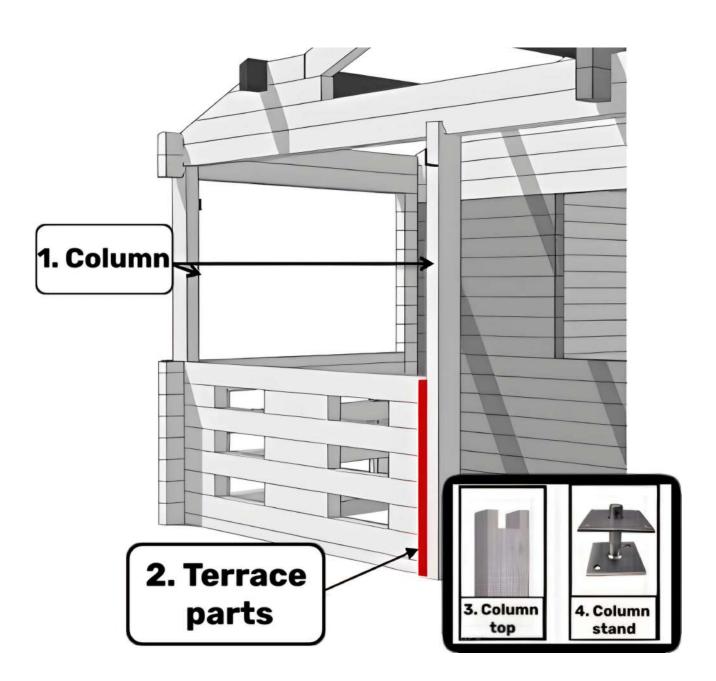
Columns provide essential support at the cabin's structurally weakest points.

Standard Specifications

- » Length: Typically ≥2300mm to accommodate assembly variations
- » Top Preparation: Upper section usually includes a pre-cut groove for easier installation
- » Adjustment Capability: Metal stands allow height adjustment during settling

Installation Process

Measuring and Cutting


- 1. Timing: Install after reaching the designated mounting level
- 2. **Measurement:** Carefully measure required support length
- 3. **Cutting:** Trim from the bottom if adjustment needed

PRO TIP: Conservative Cutting: Cut less rather than more initially.
You can always shorten a column, but you cannot easily lengthen one that's too short.

Column Stand System

- » Included Components: Metal column stands provided for each column
- » Installation: Secure with screws at column base
- » Function: Allows height adjustment during cabin settling period
- » Benefit: Prevents wall gaps that can occur as the structure settles

Columns - 1. Column (135x70/110x110 mm measurements); 2. Terrace parts (used to cover gaps, fixing fence to column. ~1.2 m length, 43x43 mm, must be cut when assembling); 3. Column top; 4. Column stand (must be adjusted time by time).

Column Integration with Roof Structure

When Used as Roof Supports

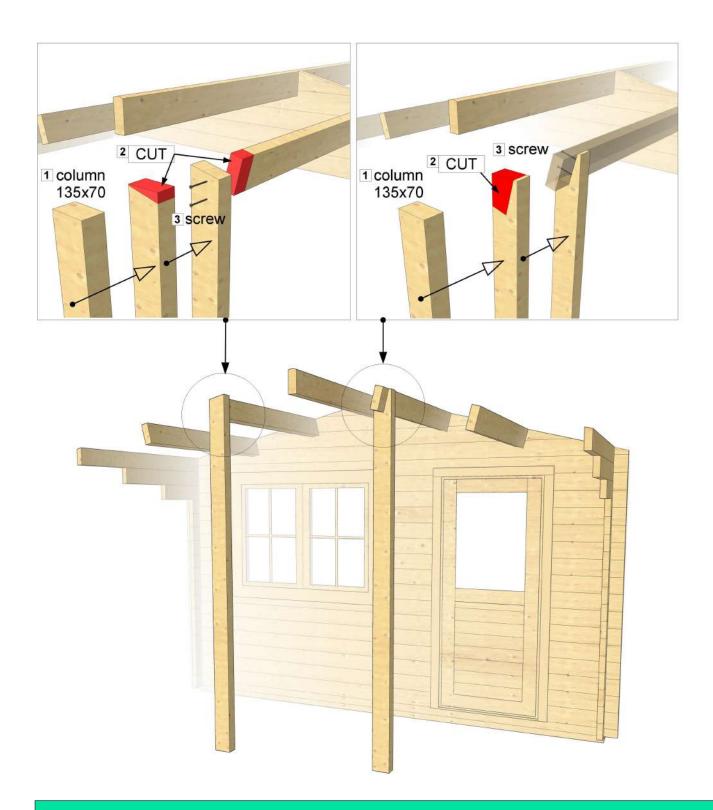
Columns can serve dual purposes, supporting both terrace structure and roof beams.

Modification Requirements

- » Cutting Options: Two cutting configurations available depending on roof beam placement
- » Fastening: Secure with screws after proper positioning
- » Measurement: Standard column sizes are 135x70mm or 110x110mm

Installation Considerations

- » Choose appropriate cutting pattern based on your specific roof beam layout
- » Ensure proper load distribution
- » Verify column alignment with structural requirements


Safety and Quality Notes

- » Always wear appropriate safety equipment
- » Double-check measurements before cutting
- » Test-fit components before final installation
- » Allow for wood movement and settling
- » Maintain consistent spacing and alignment throughout the project

Maintenance Recommendations

- » Regularly check column stand adjustments during the first year
- » Inspect all fasteners periodically
- » Clean debris from decking gaps to maintain drainage
- » Apply appropriate wood treatment as recommended by manufacturer

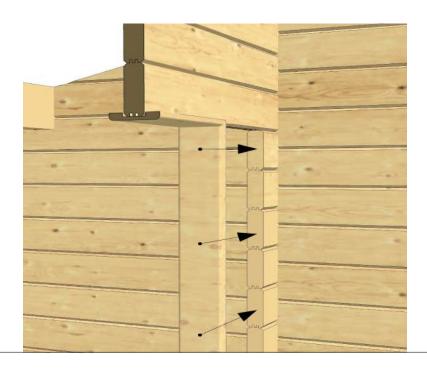
Columns as roof beam supports – 1. Column (135x70/110x110 mm measurements); 2. Places which must be cut (two options to choose from); 3. Screw.

U-PROFILES

What are U-profiles?

- » Cosmetic trim pieces that cover log ends or grooves
- » Used to create a finished appearance on exposed wood surfaces

Specifications:


- » Standard length: 3 meters
- » Available for wall thicknesses: 44mm to 70mm
- » Not available for "Twin skin 44+44mm" wall systems

Installation notes:

- » May require cutting to fit specific applications
- » Must leave a few millimeters gap on each side to accommodate natural wood movement (expansion and contraction)

Ordering:

- » Not included by default in packages
- » Must be specifically requested when placing an order

